3D technologies today

Java OpenGL
o Common, re-usable language; ® Open source with many penGL
well-designed implementations
% e Steadily increasing popularity in o Well-designed, old, and still evolving
= industry) e Fairly cross-platform
&===* Weakbutevolving 3D support DirectX/Direct3d (Microsoft)
C++) e Microsoft™ only
e Long-established language e Dependable updates
o Long history with OpenGL Mantle (AMD)
e Long history with DirectX
e Losing popularity in some fields ® Targeted at game developers

o AMD-specific

Higher-level commercial libraries
e RenderMan
e AutoDesk / Softimage

(finance, web) but still strong in
others (games, medical)
JavaScript
s ® WebGL is surprisingly popular
C++

WebGL

@ebGL.

e JavaScript library for 3D

rendering in a web browser
e Based on OpenGL ES 2.0
e Many supporting JS libraries
e Even gwt, angular, dart...

e Most modern browsers
support WebGL, even mobile
browsers

e Enables in-browser 3D games

e Enables realtime
experimentation with glsl
shader code

Samples from Shadertoy.com

Vulkan

Vulkan is the next generation of
OpenGL: a cross-platform open
standard aimed at pure performance
on modern hardware

Compared to OpenGL, Vulkan--

o Reduces CPU load

e Has better support of multi-CPU
core architectures

e Gives finer control of the GPU

--but--

The Talos Principle running on Vulkan (via www. geforce.com)

e Drawing a few primitives can take 1000s of lines of code
e Intended for game engines and code that must be very well optimized

\ _
Alex Benton, University of Cambridge — A.Benton@damtp.cam.ac.uk 2
Supported in part by Google UK, Ltd
'd 1\ 'd 1\
penGL. : penGL|ES.
OpenGL Mobile GPUs
OpenGL is... A A state-based renderer e OpenGL ES 1.0-3.2
e Hardware-independent ® many settings are configured e A stripped-down version
® Operating systfm independent beforg pagsing ir} data; renc{ler‘ing of OpenGL
e Vendor neutra behavior is modified by existing e Removes functionality
On many platforms state that is not strictly
e Great support on Windows, Mac, Accelejrates common 3D graphics necessary on mobile
linux, etc ‘ ‘ A operations devices (like recursion!)
e Support for mobile devices with ° Cljpping (for primitives) e Devices
OpenGL ES e Hidden-surface removal i0S: iPad. iPh Pod
e Android, iOS (but not (Z-buffering) ¢ 1051 1Fad, 1Fhone, 1o i
Windows Phone) e Texturing, alpha blending TOUCh. OpenGL ES 2.0 rendering (i0S)
® Android Wear watches! NURBS and other advanced ¢ Android phones
e Web support with WebGL primitives (GLUT) e PlayStation 3, Nintendo
3DS, and more
A J/ (N J
3 4
'd 1\ 'd

OpenGL in Java - choices

JOGL: “Java bindings for LWJGL: “Lightweight

OpenGL” Java Games Library”
jogamp.org/jogl www.lwijgl.org

LWIGL is targeted at game
developers, so it’s got a solid
threading model and good support for
new input methods like joysticks,

JOGL apps can be deployed as
applications or as applets, making it
suitable for educational web demos
and cross-platform applications.]
gaming mice,

e Ifthe user has installed the latest and the Oculus
Java, of course. Rift

e And if you jump through ’
Oracle’s authentication hoops.

e And... let’s be honest, 1998
called, it wants its applets back.

JOGL shaders in action.
Image from Wikipedia

OpenGL architecture

The CPU (your processor and friend) delivers data to the GPU
(Graphical Processing Unit).

e The GPU takes in streams of vertices, colors, texture coordinates and
other data; constructs polygons and other primitives; then uses
shaders to draw the primitives to the screen pixel-by-pixel.

e The GPU processes the vertices according to the state set by the
CPU; for example, “every trio of vertices describes a triangle”.

This process is called the rendering pipeline. Implementing the rendering
pipeline is a joint effort between you and the GPU.

You’ll write shaders in the OpenGL shader language, GLSL.
You’ll write vertex and fragment shaders. (And maybe others.)

The OpenGL rendering pipeline

P
An OpenGL application assembles | Application
sets of primitives, transforms and

. . . Vert
image data, which it passes to o

OpenGL’s GLSL shaders. Primitive assembly
Geometry
e Vertex shaders process every vertex Clipping
in the primitives, computing info L2

such as position of each one.
e Fragment shaders compute the

Texturing
Fragment
Fog, antialiasing

color of every fragment of every —
1 imiti Alpha, stencil, depth tests
pixel covered by every primitive. Framebuffer | A7 S D e
o

The OpenGL rendering pipeline
(amassively simplified view)

N

Shader gallery I

Above: Demo of Microsoft’s XNA game platform
Right: Product demos by nvidia (top) and ATI (bottom)

OpenGL: Shaders

OpenGL shaders give the
user control over

(each pixel or partial
pixel) interpolated
between vertices.
After vertices are processed, polygons are rasterized. During
rasterization, values like position, color, depth, and others are

interpolated across the polygon. The interpolated values are
passed to each pixel fragment.

Think parallel

Shaders are compiled from within your code

e They used to be written in assembler

e Today they’re written in high-level languages

e Vulkan’s SPIR-V lets developers code in high-level GLSL but
tune at the machine code level

GPUs typically have multiple processing units

That means that multiple shaders execute in parallel

e We’re moving away from the purely-linear flow of early “C”
programming models

1\ 1\
Shader example one — ambient lighting GLSL
wreezeden S50 #version 330 Notice the C-style syntax
. void main() { ..}
uniform mat4 mvp; out vec4 fragmentColor; .
The vertex shader uses two inputs, one four-element veca
in vec4 vPos; void main() { and one four-by-four mat4 matrix; and one standard
fragmentColor = -
voiel medm() | vecd (0.2, 0.6, 0.8, 1); OUFPUt’ gl Position.
gl_Position = mvp * vPos; } The line
} gl _Position = mvp * vPos;
applies our model-view-projection matrix to calculate the
correct vertex position in perspective coordinates.
The fragment shader implements basic ambient lighting by
setting its one output, fragmentcolor, to a constant.
// Vertex Shader // Fragment Shader))
13 14
1\ 1\
The language design in GLSL is strongly based on ANSI C, Some differences from C/C++/Java:
with some C++ added. e No pointers, strings, chars; no unions, enums; no bytes, shorts, longs;
i no unsigned. No switch() statements.
e There is a preprocessor--#define, etc e There is no implicit casting (type promotion):
e Basic types: int, float, bool float foo = 1;
e No double-precision float fails because you can’t implicitly cast int to float.
e Vectors and matrices are standard: vec2, mat2 = 2x2; vec3, mat3 = e Explicit type casts are done by constructor:
3x3; vecd, matd = 4x4 vec3 foo = vec3(1.0, 2.0, 3.0);
e Texture samplers: sampler1D, sampler2D, etc are used to sample vec? bar = vec2(foo); // Drops foo.z
multidemensional textures Function parameters are labeled as in, out, or uniform.
e New instances are built with constructors, a la C++ . . .
. e Functions are called by value-return, meaning that values are copied
e Functions can be declared before they are defined, and operator into and out of parameters at the start and end of calls
overloading is supported.
J/ J
15 16
1\ 1\

OpenGL / GLSL API - setup

To install and use a shader in OpenGL:

1. Create one or more empty shader objects with
glCreateShader.

Load source code, in text, into the shader with
glShaderSource.

Compile the shader with

glCompileShader.

Create an empty program object with
glCreateProgram.
Bind your shaders to the program with
glAttachShader.
Link the program (ahh, the ghost of C!) with
glLinkProgram.
Activate your program with
glUseProgram.

Vertex
shader

Fragment
shader

Program

NS RN

Shader gallery 11

Above: Kevin Boulanger (PhD thesis,
“Real-Time Realistic Rendering of Nature
Scenes with Dynamic Lighting”, 2005)

Above: Ben Cloward (“Car paint shader”)

e N\
What will have t ite? G try in OpenGL
al will'you nave 10 Write cometry m upen
s
It’s up to you to implement perspective and lighting. The atomic datum of
1. Pass geometry to the GPU OpenGL is a vertex. Q
2. Implement perspective on the GPU e 2dor3d
3. Calculate lighting on the GPU e Specify arbitrary details
The fundamental primitives o ONAR .
in OpenGL are the line e
segment and triangle.
e Very hard to get wrong
e {vertices} + {ordering}
= surface
\ J
19
p
Geometry in OpenGL HelloGL.java [1/4]
, . JIIII0111717100711711711117711111717717711117711111117717711111177711111717
Vertex buffer objects store arrays of vertex // set up GLEW window
data--positional or descriptive. With a vertex
pos! c erp Vertex Array Vertex Buffer GLFWErrorCallback errorCallback = GLFWErrorCallback.createPrint (System.err);
bufter object (“VBO”) you can compute all Object (positions) GLFW.glfwSetErrorCallback (errorcallback) ;
vertices at once, pack them into a VBO, and ST CRETEEE
Vertex Buffer GLEW.glfwWindowHint (GLFW.GLEW_CONTEXT_VERSION_MAJOR, 3);
pass them to OpenGL en masse to let the GPU (oolors) GLEW. gl fwilindowHint (GLEW.GLEW_CONTEXT VERSION MINOR, 3);
; colors, GLFW.glfwiWindowHint (GLFW.GLFW_OPENGL_PROFILE, GLFW.GLFW_OPENGL_CORE_PROFILE) ;
processes all the vertices together. long window = GLFW.glfwCreateWindow(
To group different kinds of vertex data together, Vertex Buffer BED /% HEk By GO0 [BEighis S, TRelIET; @, O)F
L. . . 1) GLFW.glfwMakeContextCurrent (window) ;
you can serialize your buffers into a single (normals GLFW. gl fwSwapInterval (1)
VBO, or you can bind and attach them to .Gl e et melens) f
X Vertex Buffer
Vertex Array Objects. Each vertex array fommofo) J11171111111111111117777777777777777700000000000000000007770007000000000777
object (“VAO”) can contain multiple VBOs. // Set up OpenGL
: GL.createCapabilities();
Am“’“gh not reflu“ed’ VAOs help you to GL11.glClearColor (0.2f, 0.4f, 0.6f, 0.0f);
organize and isolate the data in your VBOs. GL11.glClearDepth(1.0f);
\ J
21 “HelloGL.java” - gﬁhub_com/AIexBenton/AdvancedGrgm_&%
p
HelloGL.java [2/4] HelloGL.java [3/4]
J111111111111111111171177177777177 // compile vertex shader JI1111111111111117117111111111111177777777777777777770000000000000000007777
// set up minimal shader programs int vs = GL20.glCreateShader (// set up data
GL20.GL_VERTEX_SHADER) ;
// Vertex shader source GL20.glShaderSource (// Fill a Java FloatBuffer object with memory-friendly floats
String[] vertex_shader = { vs, vertex_shader); float[] coords = new float[] { -0.5f, -0.5f, 0, 0, 0.5f, 0, 0.5f, -0.5f, 0O };
"#version 330\n", GL20.glCompileShader (vs); FloatBuffer fbo = BufferUtils.createFloatBuffer (coords.length);
"in vee3 v;", fbo.put (coords) ; // Copy the vertex coords into the
"void main() (", // Compile fragment shader floatbuffer
" gl Position = ", int fs = GL20.glCreateShader (fbo. flip ()7 // Mark the floatbuffer ready for reads
" vecd (v, 1.0);", GL20.GL_FRAGMENT SHADER) ;
"y GL20.glshadersource (// Store the FloatBuffer's contents in a Vertex Buffer Object
+i fs, fragment_ shader); int vbo = GL15.glGenBuffers(); // Get an OGL name for the VBO
GL20.glCompileShader (fs); GL15.g1BindBuffer (GL15.GL_ARRAY BUFFER, vbo); // Activate the VBO
// Fragment shader source GL15.glBufferData (GL15.GL_ARRAY BUFFER, fbo, GL15.GL_STATIC_DRAW); // Send VBO data to GPU
String[] fragment_shader = { // Link vertex and fragment
"#version 330\n", // shaders into active program // Bind the VBO in a Vertex Array Object
"out vec4 frag_colour;", int program = int vao = GL30.glGenVertexArrays(); // Get an OGL name for the VAO
"void main() (", GL20.glCreateProgram() ; GL30.glBindVertexArray (vao) ; // RActivate the VAO
" frag_colour = ", GL20.glAttachShader (program, vs); 6L20.glEnableVertexAttribArray(0); // Enable the VAO's first attribute (0)
o vecd (1.0);", GL20.glAttachShader (program, fs); GL20.glVertexAttribPointer (0, 3, GL11.GL_FLOAT, false, 0, 0); // Link VBO to VAO attrib 0
" GL20.glLinkProgram(program) ;
+i GL20.glUseProgram(program) ;
\ J

“HelloGL.java” - gﬁhub_com/AIexBenton/AdvancedGraph&

“HelloGL.java” - gﬁhub_com/AIexBenton/AdvancedGraph%E

HelloGL.java [4/4]

L1110 117077700777107771177711777117777777777777717777177777117771177111777
// Loop until window is closed

while (!GLEW.glfwiWindowShouldClose (window)) {
GLFW.glfwPollEvents () ;

GL1ll.glClear (GL11l.GL_COLOR_BUFFER BIT | GL1l.GL_DEPTH BUFFER BIT);
GL30.glBindVertexArray (vao) ;
GL1l.glDrawArrays (GL11.GL_TRIANGLES, 0 /* start */, 3 /* num vertices */);

GLEW.glfwSwapBuffers (window) ;
}

JIIIIIT111100011117111100077111117177771117107711111100717711111711771111)
// Clean up

GL15.glDeleteBuffers (vbo);
GL30.glDeleteVertexArrays (vao) ;
GLFW.glfwDestroyWindow (window) ;
GLFW.glfwTerminate () ;
GLEW.glfwSetErrorCallback(null).free();

Binding multiple buffers ina VAO

Need more info? We can pass more than just coordinate data--we can create as
many buffer objects as we want for different types of per-vertex data. This
lets us bind vertices with normals, colors, texture coordinates, etc...

Here we bind a vertex buffer object for position data and another for normals:
int vao = glGenVertexArrays();
glBindVertexArray (vao) ;
GL20.glEnableVertexAttribArray (0) ;
GL20.glEnableVertexAttribArray (1) ;
GL15.glBindBuffer (GL15.GL_ARRAY BUFFER, vbo_0);
GL20.glVertexAttribPointer (0, 3, GL11.GL_FLOAT, false, 0, 0);
GL15.glBindBuffer (GL15.GL_ARRAY BUFFER, vbo_1);
GL20.glVertexAttribPointer (1, 3, GL11.GL_FLOAT, false, 0, 0);

Later, to render, we work only with the vertex array:
glBindVertexArray (vao) ;
glDrawArrays (GL_LINE_STRIP, 0, data.length);

Caution--all VBOs in a VAO must describe the same number of vertices!

J J
“HelloGL.java” - github.com/AlexBenton/AdvancedGraphits 26
Accessing named GLSL attributes from Java Improving data throughput
// Vertex shader . .
v The HelloGL sample code hardcodes the You configure how OpenGL interprets the vertex buffer. Vertices can be
tversion 330 assumption that the vertex shader input field interpreted directly, or indexed with a separate integer indexing buffer. By
versten ‘v’ is the zeroeth input (position 0). re-using vertices and choosing ordering / indexing carefully, you can reduce
tglge;;‘;i)) That’s unstable: never rely on a fixed ordering. the number of raw floats sent from the CPU to the GPU dramatically.
gl_Position = . P i incl i imitives--
ey v Instead, fetch the attrib location: Options include line primitives
} int vioc = e GL LINES
Y GL20.glGetAttribLocation (program, "v"); ® GL_LINE STRIP
GL20.glEnableVertexAttribArray (vLoe) ; ® GL_LINE LOOP
GL20.glVertexAttribPointer (vLoc, . .
Y 3, GL_FLOAT, false, 0, 0); --triangle primitives--
oA () This enables greater flexibility and Java code ® GL_TRIANGLES
glvertexAttribPointer (0, that can adapt to dynamically-changing ¢ GL TRIANGLE STRIP
3, GL_FLOAT, false, 0, 0); e GL TRIANGLE FAN Y
vertex and fragment shaders. - =
// --and more. OpenGL also offers Triangle-strip veriex indexing
backface culling and other optimizations. (counter-clockwise ordering)
J J
27 28
Memory management: Emulating classic OpenGL1.1
Lifespan of an OpenGL object direct-mode rendering in modern GL
Most objects in OpenGL are created and deleted explicitly. Because these entities The original OpenGL API allowed You can emulate the GL1.1 APL:
live in the GPU, they’re outside the scope of Java’s garbage collection. you to use direct mode to send class GLVertexData {
. . . . void begin(mode) { ..}
This means that you must handle your own memory cleanup. data for immediate output: void color(color) { .}
glBegin (GL_QUADS) ; void normal (normal) { ..}
glColor3f(0, 1, 0); void vertex (vertex) { ..}
// create and bind buffer object glNormal3f (0, 0, 1); - .
int name = glGenBuffers(); glvertex3f (1, -1, 0); void compile() { .. }
glBindBuffer (GL_ARRAY BUFFER, name); glvertex3f (1, 1, 0); }
glvertex3f (-1, 1, 0); i
/7 work with your object e The method compile() can
g (=1, , 0);
/7 . g1End () ; encapsulate all the vertex buffer
// delete buffer object, free memory IOgic’ making cach instance a
ey e g Direct mode was very inefficient: the self-contained buffer object.
GPU was throttled by the CPU. Check out a working example in the
class framework.GLVertexData ON
the course github repo.
J
29 30

Recommended reading

Course source code on Github -- many demos
(https://github.com/AlexBenton/AdvancedGraphics)

The OpenGL Programming Guide (2013), by Shreiner, Sellers, Kessenich and Licea-Kane
Some also favor The OpenGL Superbible for code samples and demos
There’s also an OpenGL-ES reference, same series

OpenGL Insights (2012), by Cozzi and Riccio

OpenGL Shading Language (2009), by Rost, Licea-Kane, Ginsburg et al

The Graphics Gems series from Glassner

ShaderToy.com, a web site by Inigo Quilez (Pixar) dedicated to amazing shader tricks and
raycast scenes

J
31 Alex Benton, University of Cambridge — A.Benton@damtp.cam.ac.uk
Supported in part by Google UK, Ltd
N\ (
2.Perspective and Camera Control Getting some perspective
It’s up to you to implement perspective and lighting. To add 3D perspective to our flat model, we face three
1. Pass geometry to the GPU challenges:
2. Implement perspective on the GPU e Compute a 3D perspective matrix
3. Calculate lighting on the GPU e Pass it to OpenGL, and on to the GPU
e Apply it to each vertex
To do so we’re going to need to apply our perspective matrix
in the shader, which means we’ll need to build our own 4x4
perspective transform.
J (. J
33 34
p
4x4 perspective matrix transform Writing uniform data from Java
Every OpenGL package provides utilities to build a Once you have your perspective matrix, the next step is to copy it out to the
. . s GPU as aMat4, GLSL’s 4x4 matrix type.
perspective matrix. You’ll usually find a method named | Comvert vour floats o a FloatBuf
. nvi s T,
something like g/GetFrustum() which will assemble a 4x4 OTer youT oaR o T oan®
. . . float datal[l[]l = /* your 4x4 matrix here */
grid of floats suitable for passing to OpenGL. FloatBuffer buffer = BufferUtils.createFloatBuffer (16);
. for (int col = 0; col < 4; col++) {
Or you can build your own: for (int row = 0; row < 4; rowi) {
« Field of view, typically 50° , buffer.put ((float) (datalrow][coll));
—1 0 0 0 }
ar ‘mn(g) ar: Aspect ratio of width over buffer.flip();
2 height
= . 1 " ” 2. Write the FloatBuffer to the named uniform:
mn(g) NearZ: Near Clip pla‘“e int uniformlLoc = GL20.glGetUniformLocation (
2 program, “name”);
0 — NearZ — FarZ 2 FarZ - NearZ FarZ: Far clip plane if (uniformLoc != -1) {
NearZ — FarZ NearZ — FarZ GL20.glUniformMatrix 4fv(uniformlLoc, false, buffer);
N— 0 0 1 0 J \ })
35 36

Reading uniform data in GLSL

The FloatButfer output is received in the shader as a
uniform input of type Mata.

This shader takes a matrix and applies it to each vertex:

#version 330
uniform mat4 modelToScreen;
in vec4 vPosition;

void main() {
gl _Position = modelToScreen * vPosition;

}

Use uniforms for fields that
are constant throughout the
rendering pass, such as

2 Fell Cube R)

Object position and camera position: a
‘pipeline’ model of matrix transforms

L2W Scene composition
Object definition Viewing frame definition
Lighting definition

Local or “model” space

w2v

World space

i Backface culling
Viewing | Viewing frustum culling
space HUD definition

P’=82D * V28 « W2V * L2W * P
Each of these transforms can be
represented by a 4x4 matrix.

3D screen space

Display space vas

Hidden-surface removal
Scan conversion

transform matrices and J
lighting coordinates. 37 ‘ See also: the matrix stack design pattern, in the appendix of this lecturd8
The pipeline model in software:
The pipeline model in OpenGL & GLSL The matrix stack design pattern
A flexible 3D graphics framework will [#version 330 A common design pattern in 3D graphics, especially when
track each transform: ‘ objects can contain other objects, is to use matrix stacks to
) uniform mat4 modelToWorld; . ..
e The object’s current transform uniform matd worldToCamera; store stacks of matrices. The topmost matrix is the
o The c",lme,m’s transforlm uniform mat4 cameraToScreen; product Of all matrices belOW.
¢ The ¥1ew1ng perspective in vec3 v; This allows you to build a local frame of reference—
trans orm) . ot main) o local space—and apply transforms within that space.
These matrices are all “constants™ for gl Position = cameraToScreen Remember: matrix multiplication is associative but not
the (;iu{atlonEof ; smg:)e frarpe of * wo(ril;j;o‘(,:qamiga commutative.
rendering. Each can be written to a ? medelllgios ABC = A(BC) = (AB ACB £BCA
16-float buffer and sent to the GPU 2 (@ 1.0)p A C (BC) . (AB)C# C, #BC
with g10Uni formMatrizd fv Pre-multiplying matrices that will be used more 0
Remember to fetch uniform names than once Is fastpr than multiplying many
with glGetUniformLocation never matrices every time you render a primitive.
assume ordering.
J/ J
39 40

Matrix stacks

Matrix stacks are designed for nested relative
transforms.

pushMatrix();

translate(0,0,-5)7

pushMatrix();
rotate(45,0,1,0);

popMatrix();

pushMatrix(); |T | |T | |T | |T |
rotate(-45,0,1,0);
render() ;

popMatrix () ;

popMatrix () ;

; identity identity Kidentigz identity)

render your
geometry here

Scene graphs

Torso

A scene graph is a tree of
scene elements where a
child’s transform is relative
to its parent.

]
The final transform of the (hana) [))
child is the ordered product
of all of its ancestors in the
tree.
M ceiowora = M M M
person © Vhorso © Vharm * Vihand * finger)

41

42

Hierarchical modeling in action

void renderLevel (GL gl, int level, float t) {
pushMatrix();
rotate(t, 0, 1, 0);
renderSphere(gl) ;
if (level > 0) {
scale(0.75f, 0.75f, 0.75f);
pushMatrix () ;
translate(l, -0.75f, 0);
renderLevel (gl, level-1l, t);
popMatrix();
pushMatrix () ;
translate (-1, -0.75f, 0);
renderLevel (gl, level-1, t);
popMatrix();
}
popMatrix();

Hierarchical modeling in action

J

43

“HierarchyDemo.java” - gﬁhub_com/AIexBenton/AdvancedGraphl’&

3. Lighting and Shading

It’s up to you to implement perspective and lighting.
1. Pass geometry to the GPU

2. Implement perspective on the GPU

3. Calculate lighting on the GPU

Lighting and Shading (a quick refresher)

Recall the classic lighting equation:
® I =k, + k(N'L) + k (E*R)®

where...

ek, isthe ambient lighting coefficient of the object or scene
e Kk (NeL) is the diffuse component of surface illumination (‘matte’)
e Xk (E*R)" isthe specular component of surface illumination (‘shiny’)
wherer = L - 2(LeN)N
We compute color by vertex or by polygon fragment:

e Color at the vertex: Gouraud shading
e Color at the polygon fragment: Phong shading

Vertex shader outputs are interpolated across fragments, so
code is clean whether we’re interpolating colors or normals.

46

Lighting and Shading: required data

Shading means we need extra data about vertices.
For each vertex our Java code will need to provide:

e Vertex position
e Vertex normal
e [Optional] Vertex color, k, / k;, / kg, reflectance, transparency ...

We also need global state:

Camera perspective transform

Camera position and orientation, represented as a transform

Object position and orientation, to modify the vertex positions above
A list of light positions, ideally in world coordinates

e o o o

47

Shader sample —
Gouraud shading

#version 330 #version 330

uniform mat4 modelToScreen; in vec4 color;
uniform mat4 modelToWorld;
uniform mat3 normalToWorld;
uniform vec3 lightPosition;

out vecd fragmentColor;

void main() {
in vecd v; fragmentColor = color;

in vec3 n;)
out vec4 color;
const vec3 purple = vec3(0.2, 0.6, 0.8);

void main() {
vec3 p = (modelToWorld * v).xyz;
vec3 n = normalize(normalToWorld * n);
vec3 1 = normalize(lightPosition - p);
float ambient = 0.2;
float diffuse = 0.8 * clamp(0, dot(n, 1), 1);

\ Diffuse lighting
M d-ky(NL)
expressed as a shader J

color = vec4(purple
* (ambient + diffuse), 1.0);
gl_Position = modelToScreen * v;

48

Shader sample —
Phong shading

#version 330

uniform mat4 modelToScreen;
uniform mat4 modelToWorld;
uniform mat3 normalToWorld;

in vecd v;
in vec3 n;

out vec3 position;
out vec3 normal;

void main() {

gl_Position =
modelToScreen * v;
}

GLSL includes handy helper methods for
illumination such as reflect()--perfect for
specular highlights.

#version 330

uniform vec3 eyePosition;
uniform vec3 lightPosition;

in vec3 position; a=k
5 A
in vec3 normal; d:kD(N'L)
_ n
out vec4 fragmentColor; § =ky(E-R)

const vec3 purple = vec3(0.2, 0.6, 0.8);

void main() {

normal = normalize(vec3 n
normalToWorld * n); vec3 1
position = vec3 e
(modelToWorld * v).xyz; vec3 r

float specular = 0.4 *
pow(clamp (0, dot(e, r), 1), 2);

fragmentColor = vecd (purple *

normalize (normal);

normalize (lightPosition - position);
normalize(position - eyePosition);
reflect(l, n);

* clamp(0, dot(m, 1), 1);

Shader sample — Gooch shading

Gooch shading is an example of non-realistic
rendering. 1t was designed by Amy and Bruce
Gooch to replace photorealistic lighting with a
lighting model that highlights structural and

contextual data.

e They use the term of the conventional lighting
equation to choose a map between ‘cool” and ‘warm’

colors.

o This is in contrast to conventional illumination where
lighting simply scales the underlying surface color.
e This, combined with edge-highlighting through a
second renderer pass, creates models which look more

like engineering schematic diagrams.

Image source: “A
Non-Photorealistic
Lighting Model For
Automatic Technical
Tlustration”. Gooch,
Gooch, Shirley and
Cohen (1998).
Compare the Gooch

— L/ shader, above, to the)
(ambient + diffuse + specular), 1.0); Phong shader (right).
} 49 50
Shader sample —
Gooch shading e s s Shader sample — Gooch shading

#version 330

// Original author: Randi Rost
// Copyright () 2002-2005 3Dlabs Inc. Ltd.

uniform mat4 modelToCame.
uniform mat4 modelToS
uniform mat3 normalTo

vec3 LightPosition = vec3(0, 10, 4);

in vecd vPos.
in vee? vNor

ion;

i

out float NdotL;
out vecd ReflectVec;
out ves3 ViewVes;

void main()

{

vec3 ecPos
vec3 tnorm
vec3 y

3 (modelToCamera * vPosition);

htPosition = ecPos);

tnorm) + 1.0) * 0.5;
« vPosition;

do
gl_Position = model ToScr:

}

ormalize [normalToCamera * vNormal);

(-lightVec, tnorm));

uniform vec3 vCalor;

float DiffuseC

vecd Warm =
in float NdotL;
in vec3 Refle
in vec3 ViewVs

out vecd result;

void main ()

vec3 nRefl =
vec3 nview =
float spec =

pow (max (dot (nRefl, nview), 0.0}, 32.0);

if (gl_FrontFacing) |
result = vecd (min (kfinal + spec, 1.0), 1.0)
} else |
result = vas4(0, 0, 0, 1);
b
b

In the vertex shader source, notice the use of the built-in ability to
distinguish front faces from back faces:
{...
This supports distinguishing front faces (which should be shaded
smoothly) from the edges of back faces (which will be drawn in heavy

if (gl FrontFacing)

black.)

In the fragment shader source, this is used to choose the weighted color

by clipping with the a component:

vec3 kfinal = mix(kcool,

Here mix () is a GLSL method which returns the linear interpolation
between kcool and kwarm. The weighting factor is NdotL, the

lighting value.

kwarm, NdotL);

t— |/ J
51 52
)

Shader sample — Gooch shading

Procedural texturing in the

fragment shader

St bt - oEm

- S Dam e TEN

I

const vec3 CENTER = vec3(0, 0, 1);

const vec3 LEFT_EYE = vec3(-0.2, 0.25, 0);
| | const vecs riGHT EYE = vec3(0.2, 0.25, 0);
/..

void main() {

1);
Il (length(position - RIGHT EYE) < 0.1);

& (position.y <= =0.1};

vec3 color = (isMouth || isEye || isOutsideFace)
’ ? BLACK : YELLOW;
fragmentColor = vecd (color, 1.0);

53

bool isOutsideFace = (length(position - CENTER) >

i bool isEye = (length(position - LEFT EYE) < 0.1)

bool isMouth = (length(position - CENTER) < 0.75)

Sras Dol

(Code truncated for brevity--again, check out
the source on github for how I did the curved
mouth and oval eyes.)

5%

Advanced surface effects

e Specular highlighting
Non-photorealistic
illumination

Volumetric textures
Bump-mapping
Interactive surface effects
Ray-casting in the shader
Higher-order math in the
shader

...much, much more!

Antialiasing on the GPU

Hardware antialiasing can dramatically
improve image quality.

o This is easier in shaders than it is in standard
software
e But it really just postpones the problem.
Several GPU-based antialiasing solutions
have been found.
e Eric Chan published an elegant polygon-based

the filtered edges into the original polygonal
surface. (See figures at right.)

e The naive approach is to supersample the image

antialiasing approach in 2004 which uses the GPU I
to prefilter the edges of a model and then blends

Antialiasing on the GPU

One clever form of antialiasing is adaptive analytic
prefiltering.

e The precision with which an edge is rendered to the screen is
dynamically refined based on the rate at which the function defining
the edge is changing with respect to the surrounding pixels on the
screen.

This is supported in the shader language by the methods
drdx (F) and dFdy (F).

o These methods return the derivative with respect to X and Y of some
variable F.

e These are commonly used in choosing the filter width for antialiasing
procedural textures.

(A) Jagged lines visible in the box function of the procedural stripe texture
(B) Fixed-width averaging blends adjacent samples in texture space: aliasing still occurs at the
top. where adjacency in texture space does not align with adjacency in pixel space.

(C) Adaptive analytic prefiltering smoothly samples both areas.

Image source: Figure 17.4. p. 440, OpenGL Shading Language, Second Edition, Randi Rost,

Particle systems on the GPU

Shaders extend the use of texture memory
dramatically. Shaders can write to texture
memory, and textures are no longer limited
to being two-dimensional planes of
RGB(A).

e A particle systems can be represented
by storing a position and velocity for
every particle.

o A fragment shader can render a particle
system entirely in hardware by using
texture memory to store and evolve
particle data.

Image by Michael Short

Addison Wesley, 2006. Digital image scanned by Google Books ©
Original image by Bert Freudenberg, University of Magdeburg, 2002 57 58
Tessellation shaders Tessellation shaders
Tesselation is a new shader type One use of tessellation is in rendering How it works: [VcrlCV shader]
introduced in OpenGL 4.x. Tesselation ~ geometry such as game models or terrain)) ¥
shaders generate new vertices within with view-dependent Levels of Detail ® Youtell OpenGL how many vertices a single [e ——]
patches, transforming a small number of (“LOD?). patch will have: ¥
vertices describing triangles or quads Another is to do with geometry what glPatchParameteri (GL_PATCH_VERTICES, 4); Tessellation primitive generator |
into a large number of vertices which ray-tracing did with bump-mapping: e You tell OpenGL to render your patches: ¥
can be positioned indiVidua“y' };le%'}c:;ﬁ:fiilion realtime geometie glDrawaArrays (GL_PATCHES, first, numVerts); [Tessellation Evaluation Shader]
o The Tessellation Control Shader specifies output ¥
parameters defining how a patch is split up: [R]
gl_TessLevelOuter[]and _ 1
gl TessLevellnner[]. . C . [Fragment shader]
These control the number of vertices per primitive

Florian Boesch's LOD ter

g/entries/2010/nov/0 sellation om’s WebGL tessellation demo

edge and the number of nested inner levels,
respectively.

v

60

Tessellation shaders

Tessellation shaders

e The generated vertices are Inner = 1 Inner = 2 Inner = 3 Inner = 4
® The tessellation primitive gl_TessLevelouter([3] = 5.0 then passed to the
generator generates new Y | L0 /,/: | Tesselation Evaluation Outer = 1 . . .
vertices along the outer edge - Net LT i v Shader, which can update
and inside the patch, as o o pieleastovel ﬂ:'}f’af g B vertex position, color,
specified by N S S 8 normal, and all other
gl_TessLevelOuter[]and % 7 g | // |; I,’I i N per-vertex data. Outer = 2 . ‘ .
gl_TessLevelInner(]. sh g 0 5 o Ultimately the complete
Each field is an array. Within the B) ‘vg.k 1 ' L. = set of new vertices is
array, each value sets the number of 3 51 Sl i Sl j* \: .1 passed to the geometry B
intervals to generate during L - / NS ° and fragment shaders. outer=3
subprimitive generation. = K ,/ \\// N
Triangles are indexed similarly, but gl_Tesstevelouterll] = 3.0 ‘ ‘ .
only use the first three outer and Outer = 4
the first Inner array field.
6l i pdeontnet oo ss
CPU vs GPU — an object demonstration Recommended reading
Course source code on Github -- many demos
(https://github.com/AlexBenton/AdvancedGraphics)
The OpenGL Programming Guide (2013), by Shreiner, Sellers, Kessenich and Licea-Kane
Some also favor The OpenGL Superbible for code samples and demos
3 There’s also an OpenGL-ES reference, same series
OpenGI Insights (2012), by Cozzi and Riccio
3 OpenGL Shading Language (2009), by Rost, Licea-Kane, Ginsburg et al
The Graphics Gems series from Glassner
g ShaderToy.com, a web site by Inigo Quilez (Pixar) dedicated to amazing shader tricks and
raycast scenes
&
“NVIDIA: Mythbusters - CPU vs GPU”
https://www.youtube.com/watch?v=-P28LK W TzrI 63 64

Ray tracing

e A powerful alternative to polygon scan-conversion techniques
e An elegantly simple algorithm:

Given a set of 3D objects, shoot a ray from the eye through the
center of every pixel and see what it hits.

66

Examples

The algorithm

Select an eye point and a screen plane.

for (every pixel in the screen plane):

Find the ray from the eye through the pixel’s center.

2OV Planet by Casey Unrig (2004) *Dancing Cube* by Friedrich A Lohmuelier (2003)

for (each object in the scene):
if (the ray hits the object):
if (the intersection is the nearest (so far) to the eye):

Record the intersection point.
Record the color of the object at that point.

Set the screen plane pixel to the nearest recorded color.

“Glasses" by Gilles Tran (2006)
"Villarceau Cir V. (2006) 68

Tor Olev Kristensen (2004)

Al images are from the POV-Ray Hall of Fame: hol.ovray.org

((N\
It doesn’t take much code Running time
The basic algorithm is The ray tracing time for a scene is a function of
straightforward, but there's (num rays cast) X -
much room for subtlety - : e — (num lights) x
e Refraction Croet sphere(ves cen celddotble rad ik kK1) (num objects in scene) x
e Reflection .
e Shadows (num reflective surfaces) x
. Anti-ahias(ing (num transparent surfaces) x
e Blurred edges
e Depth-of-field effects (num Shadqw rays) X
o (ray reflection depth) x ...
Image by nVidia
Contrast this to polygon rasterization: time is a function of the
number of elements in the scene times the number of lights.
\ Lvunit(U)),black) ;printf ("30.f $0.f %0.£\n",U.x,U.y,U.z);) \ J
(ot ectonte vy oy s st 72 ‘ 0
(N\ (N\
Ray-traced illumination Hitting things with rays .%
Once you have the point P (the intersection of the ray with A ray is defined parametrically as
the nearest object) you’ll compute how much each of the Pt)=E+1D,1>0 (@)
lights in the scene illuminates P.
difiuse 0 where E is the ray’s origin (our eye position) and D is the
jjuse = . . .
- ray’s direction, a unit-length vector.
specular = 0
for (each light L, in the scene):
if (NL) > 0: L, We expand this equation to three dimensions, x, y and z:
[Optionally: if (a ray from P to L, can reach L,):] 7) = + 1
ek x(t)) X, : X, g
specular += kyReE)" Y = Ve T tz ®)
intensity at P = ambient + diffuse + specular Z (t) Iy Tz D
. . J
£ 71 72

Hitting things with rays:
Sphere

The unit sphere, centered at the origin, has the implicit equation

1)
Substituting equation (/) into (y) gives

(x,x)7 + by)P+ (2 tz) = 1
which expands to

Pl 2y 0z) (20, ¥ 2y, t 22,2) + (e) = 0
which is of the form

at*+bt+c=0
which can be solved for 7.

_ —bEyb—dac

- 2a

Xy

...giving us two points of intersection.

M~)

/

S

Hitting things with rays:
Cylinder

The infinite unit cylinder, centered at the origin, has the implicit equation
Ky = ©)
Substituting equation (/) into (J) gives
i)+ 1y, =1
which expands to
Pl 2ty 2xx, 2y, ,) (xS =0
which is of the form
at*+bt+c=0
which can be solved for 7 as before, giving us two points of intersection.

The cylinder is infinite; there is no z term.

73

74

Hitting things with rays:
Planes and polygons

A planar polygon P can be defined as B
Polygon P = {v/, .., v}
which gives us the normal to P as
N= (Vv x(v*-v!)
The equation for the plane of P is
Nep-v!) =0 ©
Substituting equation (a) into (¢) for p yields
Ne(E+1D -v!y=0
x4yt +ze iz D0
(Nevt)—(NeE)
NeD

Point in convex polygon

Half-planes method

e FEach edge defines an infinite half-plane
covering the polygon. If the point P lies ,
in all of the half-planes then it must be i
the polygon.

e For each edge e=v'—V' /:

o Rotate e by 90° CCW around N.
m Do this quickly by crossing N with e.
o If efe(P-v) < 0 then the point is outside e.

e Fastest known method.

75

76

Barycentric coordinates

Barycentric coordinates (1 ,,,1,.) are a

coordinate system for describing the location of

a point P inside a triangle (4,B,C).

® You can think of (¢,7,1.) as ‘masses’ T
placed at (4, B,C) respectively so that the c>C
center of gravity of the triangle lies at P.

e (1, [B’.t(‘,) are also proportional to the
subtriangle areas.

o The area of a triangle is ¥z the length of the cross
product of two of its sides.

Point in nonconvex polygon

Winding number

o The winding number of a point P in a
curve C is the number of times that the
curve wraps around the point.

e For a simple closed curve (as any
well-behaved polygon should be) this
will be zero if the point is outside the
curve, non-zero of it’s inside.

e The winding number is tllle sum of the Figure from Eric Haines’
angles from vi to P to VH . “Point in Polygon Strategies™,

o £ Caveat: This method is elegant but slow. Graphics Gems IV. 1994

Angle sum not 0.
50 point is inside

78

Point in nonconvex polygon

Ray casting (1974)

e (Odd number of crossings = inside

e [ssues:
o How to find a point that you know is inside?
o What if the ray hits a vertex?
o Best accelerated by working in 2D

® You could transform all vertices such that the coordinate system of
the polygon has normal = Z axis...

m Or, you could observe that crossings are invariant under scaling
transforms and just project along any axis by ignoring (for
example) the Z component.

e Validity proved by the Jordan curve theorem

The Jordan curve theorem

“Any simple closed curve C divides the points of the

plane not on C into two distinct domains (with no

points in common) of which C is the common

boundary.”

e First stated (but proved incorrectly) by Camille Jordan (1838
-1922) in his Cours d'Analyse.

Sketch Of pI‘OOf . (For full proof see Courant & Robbins, 1941.)

e Show that any point in A can be joined to any other point in A
by a path which does not cross C, and likewise for B.

e Show that any path connecting a point in A to a point in B
must cross C.

A

C

79

80

The Jordan curve theorem on a sphere

Note that the Jordan curve theorem can be extended to

a curve on a sphere, or anything which is topologically

equivalent to a sphere.

“Any simple closed curve on a sphere separates the
surface of the sphere into two distinct regions.”

A \

5/

\]

Local coordinates, world coordinates

A very common technique in graphics is to associate a
local-to-world transform, T, with a primitive.

5 [0 |o |o
o |2 |o |o
— =
o o |5 |o
o [0 |o |1

A 4x4 scale matrix, which
The cylinder “as it sees multiplies x and z by 5, y by 2. !
itself”, in local coordinates i 5

The cylinder “as the world sees it”, in world coordinates

J

81

82

Local coordinates, world coordinates:

In order to test whether a ray hits a transformed object,
we need to describe the ray in the object’s local
coordinates. We transform the ray by the inverse of
the local to world matrix, T™*.

Transforming the ray TE

x=0 x=10
World coordinates
If the ray is defined by TIE
P(t) = E + tD
then the ray in local coordinates is defined by
TH(P(t)) = TH(E) + t(T™, ,D)
where T™*,__ is the top left 3x3 submatrix of T~*. —|—‘-
x=10 x=0

Local coordinates

Finding the normal

We often need to know N, the normal to the surface at the
point where a ray hits a primitive.

e [f'the ray R hits the primitive P at point X then N is...

Primitive tvpe Equation for N
Unit Sphere centered at the origin N=X
Infinite Unit Cylinder centered at the origin N=[x,y.0]

Infinite Double Cone centered at the origin N=X x(Xx[00z.])

Plane with normal N=n

We use the normal for color, reflection, refraction, shadow rays...

83

Converting the normal from local to world
coordinates

To find the world-coordinates normal N from the
local-coordinates N,, multiply N, by the transpose L
of the inverse of the top left-hand 3x3 submatrix of
T:

local
N=((T,) ")"N —

3x3 L

o We want the top left 3x3 to discard translations
For any rotation O, (0)'=0 N

e Scaling is unaffected by transpose, and a scale of (a,b,¢)
becomes (1/a,1/b,1/c) when inverted

Local coordinates, world coordinates
Summary

To compute the intersection of a ray R=E+tD with an object

transformed by local-to-world transform T:

1. Compute R’, the ray R in local coordinates, as
P’ (t) = T™(P(t)) = T™(E) + t(T™, (D))

2. Perform your hit test in local coordinates.

3. Convert all hit points from local coordinates back to
world coordinates by multiplying them by T.

4. Convert all hit normals from local coordinates back to
world coordinates by multiplying them by ((73*)-%)7.

This will allow you to efficiently and quickly fire rays at arbitrarily-transformed
primitive objects.

85

86

Your scene graph and you

Many 2D GUIs today favor an event model in which events “bubble up’
from child windows to parents. This is sometimes mirrored in a scene
graph.

e Ex: achild changes size, changing the size of the parent’s bounding box
e Ex: the user drags a movable control in the scene, triggering an update event

If you do choose this approach, consider using the Model View Controller
or Model View Presenter design pattern. 3D geometry objects are
good for displaying data but they are not the proper place for control
logic.

e For example, the class that stores the geometry of the rocket should not be the
same class that stores the logic that moves the rocket.
e Always separate logic from representation.

Your scene graph and you

A common optimization derived Great for...
from the scene graph 1S the e Collision detection between
propagation of bounding scene elements
volumes. e Culling before rendering

® Accelerating ray-tracing

Nested bounding volumes allow
the rapid culling of large
portions of geometry
e Test against the bounding
volume of the top of the scene Pty -,

graph and then work down. !

87

88

Speed up ray-tracing with bounding
volumes

Bounding volumes help to quickly accelerate volumetric tests,
such as “does the ray hit the cow?”

® choose fast hit testing over accuracy

® ‘bboxes’ don’t have to be tight
Axis-aligned bounding boxes

® max and min of X/y/z.

Bounding spheres

® max of radius from some rough center
Bounding cylinders

® common in early FPS games

Bounding volumes in hierarchy

Hierarchies of bounding
volumes allow early discarding
of rays that won’t hit large
parts of the scene.

® Pro: Rays can skip
subsections of the hierarchy

® Con: Without spatial
coherence ordering the
objects in a volume you hit,
you’ll still have to hit-test
every object

89

90

Subdivision of space

Split space into cells and list
in each cell every object in
the scene that overlaps that

B

® Con: Depending on cell size,

objects may overlap many
filled cells or you may waste

memory on many empty
cells

cell.
® Pro: The ray can skip empty
cells

]

Popular acceleration structures:

The BSP tree partitions the scene into
objects in front of, on, and behind a
tree of planes.

e When you fire a ray into the scene, you test
all near-side objects before testing far-side
objects.

BSP Trees
D r /
O SE/
Problems: ¢
e choice of planes is not obvious Q

S B
e computation is slow
e plane intersection tests are heavy on
floating-point math.
A

91

92

Popular acceleration structures:
kd-trees

The kd-tree is a simplification of the
BSP Tree data structure

® Space is recursively subdivided by
axis-aligned planes and points on either side
of each plane are separated in the tree.

o The kd-tree has O(n log n) insertion time
(but this is very optimizable by domain
knowledge) and O(n??) search time.

o ld-trees don’t suffer from the mathematical
slowdowns of BSPs because their planes are
always axis-aligned.

Image from Wikipedia, bless their hearts.

Popular acceleration structures:

Bounding Interval Hierarchies

The Bounding Interval Hierarchy

of objects and shrinks each volume

to remove unused space.
e Think of this as a “best-fit” kd-tree

w
L
1]
subdivides space around the volumes v

e Can be built dynamically as each ray is

fired into the scene

Image from Wachter and Keller’s paper,
Instant Ray Tracing: The Bounding Interval

Hierarchy, Eurographics (2006)

93

94

References

Jordan curves
R. Courant, H. Robbins, What is Mathematics?, Oxford University Press, 1941
http://cgm.cs.mcgill ca/~godfried/teaching/cg-projects/97/Octavian/compgeom html

Intersection testing

http://www realtimerendering. com/intersections.htm]
http://tog.acm.org/editors/erich/ptinpoly
http://mathworld.wolfram.com/BarycentricCoordinates.html

Ray tracing

Foley & van Dam, Computer Graphics (1995)

Jon Genetti and Dan Gordon, Ray Tracing With Adaptive Supersampling in Object Space,
http://www.cs.uaf edu/~genetti/Research/Papers/GI193/GLhtml (1993)

Zack Waters, “Realistic Raytracing”,
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write _ups/zackw/realistic_raytracing.html

95

Ray Tracing:
Image Quality and Texture

Shadows

To simulate shadows in ray tracing, fire a ray
from P towards each light L . If the ray hits
another object before the light, then discard L,

in the sum.

e This is a boolean removal,
so it will give hard-edged
shadows.

e Hard-edged shadows
suggest a pinpoint light
source.

J

Softer shadows

Shadows in nature are not sharp because light sources are not
infinitely small.

e Also because light scatters, etc.

For lights with volume, fire many rays, covering the cross-
section of your illuminated space. 7
[Mlumination is scaled by (the total number of @)
rays that aren’t blocked) divided by (the total
number of rays fired).

e This is an example of Monte-Carlo integration:
a coarse simulation of an integral over a space
by randomly sampling it with many rays.

e The more rays fired, the smoother the result.

98

Softer shadows

Light radius: 1 Light radius: 5

Rays per shadow test: 20

Raytraced spotlights

To create a spotlight shining along axis S, you
can multiply the (diffuse+specular) term by

(max(LeS,0))".
™

e Raising m will tighten the spotlight,
but leave the edges soft.
e Ifyou’d prefer a hard-edged spotlight

[=3
= of uniform internal intensity, you can \
L use a conditional, e.g. L\ &
3 ((L*S>cos(15%)) 21 :0).
4 P
& D
'a.
= J (.
All images anti-aliased with 4x sup lingg E 100
Distance to light in all images: 20 units
Reflection

Reflection rays are calculated as:
R =2(-D*N)N+D

e Finding the reflected color is a
recursive raycast.

o Reflection has scene-dependant
performance impact.

e Ifyou’re using the GPU, GLSL supports
reflect() as a built-in function.

num bounces=0

-~

num bounces=1

Transparency

To add transparency, generate and trace a new
transparency ray with E,=P, D,=D.

To support this in software, make color a 1x4 vector
where the fourth component, ‘alpha’,
determines the weight of the recursed
transparency ray.

L D

Refraction

The angle of incidence of a ray of light where it
strikes a surface is the acute angle between the
ray and the surface normal.

The refractive index of a material is a measure
of how much the speed of light' is reduced
inside the material.

o The refractive index of air is about 1.003.
e The refractive index of water is about 1.33.

J

103

! Or sound waves or other wavdd

Refraction

Snell’s Law:

sinfy _me

sinfy T V2
“The ratio of the sines of the angles of incidence of a ray of
light at the interface between two materials is equal to the

inverse ratio of the refractive indices of the materials is equal
to the ratio of the speeds of light in the materials.”

Historical note: this formula has been attributed to Willebrord
Snell (1591-1626) and René Descartes (1596-1650) but first |)

discovery goes to Ibn Sahl (940-1000) of Baghdad. 105

Refraction in ray tracing

01=cos~1(NeD)

sinf; no . ny .
—_2 — —-1{—

winG, — T — Oy =sin (n23m 01)

Using Snell’s Law and the angle of ©
incidence of the incoming ray, we
can calculate the angle from the
negative normal to the outbound
ray.

106

Refraction in ray tracing

What if the arcsin parameter is > 1?

o Remember, arcsin is defined in
[-1,1].

o We call this the angle of total
internal reflection: light is trapped
completely inside the surface.

Total internal
reflection

0= sin—l(z—;sin 01)

Aliasing

aliasing

/"etliasiy/

noun: aliasing

1. PHYSICS / TELECOMMUNICATIONS

the misidentification of a signal frequency,

introducing distortion or error.

"high-frequency sounds are prone to aliasing"
2. COMPUTING

the distortion of a reproduced image so that
curved or inclined lines appear
inappropriately jagged, caused by the
mapping of a number of points to the same
pixel.

Aliasing Anti-aliasing

Fundamentally, the problem with aliasing is that we’re
sampling an infinitely continuous function (the color of
the scene) with a finite, discrete function (the pixels of the
image).

One solution to this is
super-sampling. 1f we fire
multiple rays through each

pixel, we can average the
colors computed for every
ray together to a single

blended color.

_ Image source: wiw svi.nl)
110
(N\ (N\
Anti-aliasing Types of super-sampling oI
° o|oj|eo|e
Single point Regular grid et i el
e|eo|eo|e
e Fire a single ray through the pixel’s center e Divide the pixel into a number of sub-pixels and
Super-samplin fire a ray through the center of each
P pling ool T e This can still lead to noticeable aliasing unless a
e Fire multiple rays through the pixel and e o o o very high resolution of sub-pixel grid is used
average the result o oh ol 8 ~eiie eife e ool st
e Regular grid, random, jittered, Poisson Random 12 8 4
disks L SN e Fire N rays at random points in the pixel
Adantive super-samplin e Replaces aliasing artifacts with noise artifacts
P P pling e But the human eye is much less sensitive to s
e Fire a few rays through the pixel, check L = L noise than to aliasing S ®
the variance of the resulting values, if LA e Requires special treatment for animation o *° °
similar enough then stop else fire more e o & @ o® b .. °
rays ° ° o o *e @
\ y, \ J
111 112
((N\
Types of super-sampling e Types of super-sampling
Poisson disk Jittered ®|o|efe
e Fire N rays at random points in e Divide the pixel into N sub-pixels and fire one of le]®
[] eo| @

the pixel, with the proviso that
no two rays shall pass through
the pixel closer than ¢ to one

ray at a random point in each sub-pixel
e Approximates the Poisson disk behavior o| le
e Better than pure random sampling, easier (and

another significantly faster) to implement than Poisson
e For N rays this produces a
better looking 'image than pure =< [— " . v . T e L J—
random sampling o o o % 5 o o 9 %
° ® ® ° ° ° e I &
e However, can be very hard to L T * o o .. Wl
implement correctly / quickly °. il e o ® o . ° : .. ® e * e . ®
(& (&

Poisson disk pure random jittered Poisson disk pure randoms

Applications of super-sampling

e Anti-aliasing

e Soft shadows

e Depth-of-field camera effects
(fixed focal depth, finite aperture)

Image credit: 115
http:/fen.wikipedia.org/wiki/Ray tracing_(graphics)

Texture mapping

As observed in last year’s course, real-life objects rarely
consist of perfectly smooth, uniformly colored surfaces.

Texture mapping is the art of applying an image to a
surface, like a decal. Coordinates on the surface are
mapped to coordinates in the texture.

11

Texture mapping

1 We’ll need to query the color of the
texture at the point in 3D space where
the ray hits our surface. This is
typically done by mapping

(3D point in local coordinates)
— U,V coordinates bounded [0-1, 0-1]
— Texture coordinates bounded by

[image width, image height]

UV mapping the primitives

UV mapping of a unit cube = UV mapping of a unit sphere

iflx| ==1: u=0.5+ atan(z, x) / 2x
u=(z+1)/2 v=10J5-asin(y)/n
Ve 1)/2

eliflyl —— 1
u=(x+1)/2 UV mapping of a torus of
v=(z+1)/2 major radius R

else: u=0.5+ atan2(z, x) / 21
u=(x+1)/2 v =05+ atan2(y, (x> + 22)*-R) / 2
v=@p+1)/2

UV mapping is easy for primitives but can be very difficult for arbitrary shapes.

118

Texture mapping

One constraint on using images for texture is that images
have a finite resolution, and a virtual (ray-traced) camera
can get quite near to the surface of an object.

This can lead to a
single image pixel
covering multiple
ray-traced pixels (or
vice-versa), leading to
blurry or aliased pixels
in your texture.

Procedural texture

\ edge = ((10 *u-tx = 0.1) && oddity) || (10 *v -1y < 0.1) J

Instead of relying on discrete
pixels, you can get infinitely
more precise results with
procedurally generated textures.

Procedural textures compute the
color directly from the U,V
coordinate without an image
lookup.

For example, here’s the code for
the torus’ brick pattern (right):

I've cheated slightly and multiplied the u
coordinate by 4 to repeat the brick texture
Sfour times around the torus.

tx = (int) 10 *u
ty = (int) 10 * v
oddity = (tx & 0x01) == (ty & 0x01)

return edge ? WHITE : RED 120

Non-color textures: normal mapping

Normal mapping applies the principles of texture mapping
to the surface normal instead of surface color.

In a sense, the ray tracer
computes a trompe-1’oeuil
image on the fly and
‘paints’ the surface with
more detail than is actually
present in the geometry.

The specular and diffuse shading of the
surface varies with the normals in a
dent on the surface.

If we duplicate the normals, we don’t
have to duplicate the dent.

Non-color textures: normal mapping

121

122

Anisotropic shading

Anisotropic shading occurs in nature when light reflects off a surface differently
in one direction from another, as a function of the surface itself. The specular
component is modified by the direction of the light.

http:/www.blenderguru.com/videos otropic-shading

123

Procedural volumetric texture

By mapping 3D coordinates to colors, we can create
volumetric texture. The input to the texture is local model
coordinates; the output is color and surface characteristics.

For example, to produce wood-grain texture, trees grow
rings, with darker wood from earlier in the year and
lighter wood from later in the year.

e Choose shades of early and late wood
o f(P)=(X+Z}) mod I
e color(P) = earlyWood +

1(P) * (lateWood - earlyWood)

P)=0 1)1

Adding realism

The teapot on the previous slide doesn’t look very wooden,
because it’s perfectly uniform. One way to make the
surface look more natural is to add a randomized noise
field to f(P):

1P = (XP2+ZP2 + noise(P)) mod 1

where noise(P) is a function that maps 3D coordinates in
space to scalar values chosen at random.

For natural-looking results, use
Perlin noise, which interpolates
smoothly between noise values.

Perlin noise

Perlin noise (invented by Ken Perlin) is a method for §
generating noise which has some useful traits:

o Itis a band-limited repeatable pseudorandom
function (in the words of its author, Ken Perlin)
It is bounded within a range close [-1, 1]
It varies continuously, without discontinuity
It has regions of relative stability
It can be initialized with random values, extended
arbitrarily in space, yet cached deterministically

e Perlin’s talk: hitp://www.noisemachine.com/talk1/

D | o
C R

N
Mart Zucker Matt Zucker

Mart Zucker

Non-coherent noise (left) and Perlin noise (right)
Image credit: Matt Zucker

2N

Ken Perlin

N s N
Perlin noise 1 Perlin noise 2 \
(s, t+1) (s+1Lt+1)
Perlin noise caches ‘seed’ random values on a grid at For each of the four corners, take the dot product of the
integer intervals. You’ll look up noise values at o random seed vector with the vector from that corner to %
arbitrary points in the plane, and they’ll be (x,). This gives you a unique scalar value per corner.
determined by the four nearest seed randoms on o J e As(x,) moves across this cell of the grid, the values
the grid.) ’ of the dot products will change smoothly, with no
. . discontinuity.
Given point (x,). let (s, 1) = (floor(x), floor(y)). ® As (x, y) approaches a grid point, the contribution from
— R that point will approach zero.
For each grid vertex in e The values of LL, LR, UL, UR are clamped to a range UL LR,
) 1 -1, 1].
(s, 0, (+1,0), (%1, (+1), (5. +1)] V cosetol1 1]
choose and cache a random vector of length one.
(1) (s+1,0
LL LR
J N\ J
i ettt e TSI et et 2 i ottt A0 SB00 e et L E
N s N
Perlin noise 3 Tuning noise
UL UR
Now we take a weighted average of L, LR, UL, UR.
Perlin noise uses a weighted averaging function chosen Fat)
such that values close to zero and one are moved closer
to zero and one, called the ease curve:
S() = 3228 - "
We interpolate along one axis first: -
L(x, y) = LL + S(x - floor(x))(LR-LL)
Ufx, y) = UL + S(x - floor(x))(UR-UL) ¢
Then we interpolate again to merge 2
the two upper and lower functions: ’
noise(x, y) = o4
L) + Sty -foort) (U,) - L, y) e r g
Voila! The ‘ease curve’)
N\ J
These slides borrow heavily from Mark Zucker's excellent page on Perlin noise at Texture frequency Noise frequency Noise amplitude
hitp://webstafT.itn.liu.se - stegw TNM022-2005 perl lnks/perlippoise-mathfac A4 1-3 1-3 1-3 130
N s N
References Advanced Graphics
Ray tracing
Peter Shirley, Steve Marschner. Fundamentals of Computer Graphics. Taylor & Francis,
21 Jul 2009
Hughes, Van Dam et al. Computer Graphics: Principles and Practice. Addison Wesley,
3rd edition (10 July 2013)
Anisotropic shading
Greg Ward, “Measuring and Modeling Anisotropic Reflection”, Computer Graphics
(SIGGRAPH °92 Proceedings), pp. 265-272, July 1992
(http://radsite.1bl. gov/radiance/papers/sg92/paper.html)
https://en. wikibooks.org/wiki/GLSL Programming/Unity/Brushed Metal
Perlin noise
http://www.noisemachine.com/talk 1/
http://webstaft itn.lu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html
Ray Marching and Advanced Scenes
J N J
131 132 Alex Benton, University of Cambridge — A.Benton@damtp.cam.ac.uk

Supported in part by Google UK, Ltd

Constructive Solid Geometry

Constructive Solid
Geometry (CSQ) builds
complicated forms out of
simple primitives.

These primitives are
combined with basic
boolean operations: add,
subtract, intersect.

CSG figure by Neil Dodgson

Constructive Solid Geometry

CSG models are easy to ray-trace but difficult to

polygonalize

e Issues include choosing polygon boundaries at edges;
converting adequately from pure smooth primitives to
discrete (flat) faces; handling ‘infinitely thin’ sheet
surfaces; and others.

e This is an ongoing research topic.

CSG models are well-suited to machine milling, automated

manufacture, etc

e Great for 3D printers!

133

134

Constructive Solid Geometry

Three operations:

1. Union 2. Intersection

3. Difference

Constructive Solid Geometry

CSG surfaces can be described by a binary
tree, where each leaf node is a primitive and
each non-leaf node is a boolean operation.

d g

C/+“’

Cmilli

Figure from Wyvill (1995) part two, p. 4

(What would the not
of a surface look like?)

135

136

Ray-tracing CSG models

For each node of the binary tree:

e Fireray rat 4 and B.
e List in -order all points

where r enters of leaves 4 or B.
® You can think of each intersection as
a quad of booleans--
(wasInA, isInA, wasInB, isInB)

e Discard from the list all intersections which don’t
matter to the current boolean operation.
e Pass the list up to the parent node and recurse.

Ray-tracing CSG models

Each boolean operation can

be modeled as a state
machine. nver % B \Emem
For each operation, retain

those intersections that
transition into or out of

the critical state(s). ver
nter

\eav@A

Enter A Not in A
orB

\

® Union:
{InA | In B | In A and B}

® Intersection: {Tn 2 and B}

Leave B

® Difference: {1n 2}

‘ Ieave B Leave A ‘ﬂ

137

138

(N\ N\
Ray-tracing CSG models CSG in action
Example: Difference (A-B)
A-B [WasInA [IsInA |WasInB |IsInB
tl |No Yes No No
difference =
2 |Yes Yes No Yes ((wasInA != isInA) &&
(!isInB)&& (!wasInB))
Il
3 Yes No Yes Yes ((wasInB != isInB) &&
(wasInA || isInA))
4 [No No Yes No
Difference Intersection
. J J
139 140
(N\ N\
GPU Ray-tracing GPU Ray-tracing
Ray tracing 101: “Choose the color of 1. Use a minimal fragment shader
the vixel by firi th h and (no transforms)
€ pixel by liring a ray through an 2. Setup OpenGL with minimal
. . L) .
seeing what it hits. geometry, a single quad
3. Bind a vec2 to each vertex
Ray tracing 102: specifying ‘texture’ coordinates
“Let the pixel Kk 4. Implement raytracing in GLSL
et the pixel make up per pixel:
its own mind.” a. For each pixel, compute the ray
from the eye through the pixel,
using the interpolated texture
coordinate to identify the pixel
b. Run the ray tracing algorithm
for every ray
J
141 142
(N\ N\
GPU Ray-tracing GPU Ray-tracing
// Window dimensions vec3 getRayDir (Hit traceSphere(vec3 rayorig, vec3 raydir, vec3 pos, float radius) {
uniform vec2 iResolution; vec3 camDir, float OdotD = dot (rayorig - pos, raydir);
// Camera position vec3 camUp, float OdotO = dot (rayorig - pos, rayorig - pos);
uniform vec3 iRayOrigin; vec2 texCoord) { float base = OdotD * OdotD - OdotO + radius * radius;
// Camera facing direction vec3 xAxis = normalize (
uniform vec3 iRayDir; cross (camDir, camUp)); if (base >= 0) {
// Camera up direction vec2 p = 2.0 * texCoord - 1.0; float root = sqrt (base);
uniform vec3 iRayUp; p.x *= iResolution.x float tl = -OdotD + root;
// Distance to viewing plane / iResolution.y; float t2 = -OdotD - root;
uniform float iPlaneDist; return normalize (if (tl >= 0 || t2 >= 0) {
p.x * xAxis float t = (tl < t2 && tl >= 0) ? tl : t2;
// ‘Texture’ coordinate of each + p.y * camUp vec3 pt = rayorig + raydir * t;
// vertex, interpolated across + iPlaneDist * camDir); vec3 normal = normalize (pt - pos);
// fragments } return Hit(pt, normal, t);
in vec2 texCoord; }
}
return Hit(vec3(0), vec3(0), -1);
}
. J J
143 144

N\ a
GPU Ray-tracing Textured skies
S . . #define PI 3.14159
One k;y limitation of some GLSL platforms (specifically GLSIT ES, for mobile uniform sampler2b texture;
devices and WebGL) is that GLSL may not support recursion. That makes
recursing to find reflected / refracted /transparency colors difficult. vec3 getBackground(vee3 dir) {
X . 3 L X . float u = 0.5 + atan(dir.z, -dir.x) / (2 *
We can work around this by treating the illumination equation as a weighted PI);
polynomial, where the weight of each blended contribution is computed float v = 0.5 - asin(dir.y) / PI;
before the contribution itself vecd texColor = texture2D(texture, vec2(u,
struct TBD { vec3 renderScene (vec3 rayorig, vec3 raydir) {
vec3 src; TBD tbd[10];
vec3 dir; int numTbd = 0;
float weight; vec3 cumulativeColor = vec3(0);
bi
tbd [numTbd++] = TBD(rayorig, raydir, 1.0);
for (int i = 0; 1 < 10 && numThd > 0; i++) {
color = // fire ray, compute local color
cumulativeColor += tbd[i].weight * color;
tbd [numTbd++] = // reflection ray
thd Thd++] = fracti
.“[num] // refraction ray)
145 146
a N\

An alternative to raytracing:
Ray-marching

An alternative to classic ray-tracing is
ray-marching, in which we take a
series of finite steps along the ray until
we strike an object or exceed the
number of permitted steps.

e Also sometimes called ray casting
e Scene objects only need to answer,
“has this ray hit you? y/n”
e Great solution for data like height fields
e Unfortunately...
© often involves many steps
o too large a step size can lead to lost
intersections (step over the object)
O anif () testin the heartof a for () loop
is very hard for the GPU to optimize

GPU Ray-marching:
Signed Distance Fields

Ray-marching can be dramatically
improved, to impressive realtime
GPU performance, using signed
distance fields:

Fire ray into scene

2. Ateach step, measure distance field
function: d(p) = [distance to nearest
object in scene]

3. Advance ray along ray heading by

distance d, because the nearest

intersection can be no closer than d

—

This is also sometimes called ‘sphere tracing”. Early paper:

http://graphics.cs.illinois.edu/sites/default/files/rtqjs.pdf

1\ 1\
Signed distance functions Raymarching signed distance fields
. . . float sphere(vec3 p, float r) { vec3 raymarch (vec3 pos, vec3 raydir) {
The theory is simple: the SDF e T i giep = @
computes the minimum } float d = getSdf (pos) ;
possible distance to the float cube(vec3 p, vec3 c) I ,
surface vec3 d = abs(p) - c; while (abs(d) > 0.001 && step < 50) {
. return min (max (d.x, pos = pos + raydir * d;
The sphere for instance. is max(d.y, d.z)), 0.0) d = getSdf(pos); // Return sphere(pos) or any other
X H > + length(max(d, 0.0)); step++;
the distance from p to the })
center of the sphere, less the float cylinder (vec3 p, vec3 c} {
radius. return EEERER
. Lo length(p.xz - c.xy) - c.z; (step < 50) ? illuminate(pos, rayorig) : background;
Negative values indicate a } }
sample inside the surface, float torus(vec3 p, vec2 t) {
and still express absolute vec2 q = vec |
. length(p.xz) - t.x, p.y);
distance to the surface. return length(q) - t.y;
) — J
‘ http://iquilezles.org/www/articles/distfunctions/distfunctions. htryg 150

N\ e a
Visualizing step count Find the normal to an SDF
Final image Distance field Finding the normal: local gradient
float d = getSdf (pt);:
vec3 normal = normalize (vec3(
getSdf (vec3 (pt.x + 0.0001, pt.y, pt.z)) - d,
getSdf (vec3 (pt.x, pt.y + 0.0001, pt.z)) - d,
getsdf (vec3(pt.x, pt.y, pt.z + 0.0001)) = d));
The distance function is locally linear and L G
changes most as the sample moves directly
away from the surface. At the surface, the
direction of greatest change is therefore
equivalent to the normal to the surface.
Thus the local gradient (the normal) can be
Brighter = more steps, up to 50 approximated from the distance function.
J \
151
a e N\
SDF shadows Soft SDF shadows
float shadow(vec3 pt) {
Ray-marched shadows are vec3 lightDir = normalize(lightPos - pt);
straightforward: march a ray float kd = 1;
i int step = 0;
towards each light source,
illuminate if the SDF ever drops For (EeeE € = Dd7
t < length(lightPos - pt)
too close to zero. && step < renderDepth && kd > 0.001;) {
. . float d = abs(getSDF(pt t * lightDir));
Unlike ray-tracing, soft shadows are ifoa(d < o.SoigT o R
almost free with SDFs: attenuate . Ss: ?"
illumination by a linear function of kd = min(kd, 16 * d / &);
the ray marching near to another P
obiect G &= ch By dividing d by ¢, we
) " SEStladd attenuate the strength
} Xd; of the shadow as its
BEmEn Il source is further from
} the illuminated point.
J \ J
153 154
a e N\
Combining SDFs Combining SDFs
. . min (A, B)
We combine SDF models by choosing (union)
which is closer to the sampled point.
® Take the union of two SDFs by max (-A, B)
taking the min () of their (difference)
functions.
® Take the intersection of two
SDFs by taking the max () of their
functions. max (2, B) ‘
® The max () of function A and the (intersection) ‘
negative of function B will return
the difference of A - B.
155 156

Blending SDFs

Taking the min (), max (), etc of two SDFs yields a
sharp discontinuity. /nterpolating the two SDFs with
a smooth polynomial yields a smooth distance curve,
blending the models:

A Rt

Sample blending function (Quilez)

float blend(float a, float b, float k) {
a = pow(a, k);
b = pow(b, k);
return pow((a * b) / (a + b), 1.0 / k);
}

Transforming SDF geometry

To rotate, translate or scale an SDF model, apply the inverse transform to the
input point within your distance function.

Ex:

float sphere(vec3 pt, float radius) {
return length(pt) - radius;
}

float f(vec3 pt) {
return sphere(pt - vec3(0, 3, 0));
}

This renders a sphere centered at (0, 3, 0).

More prosaically, assemble your local-to-world transform as usual, but apply its
inverse to the pt within your distance function.

J J
157 158
a N\
float fScene(vec3 pt) { .
L s . If we take the modulus of a point’s
Scale 2zx along ..
’ position along one or more axes
a, o), . . .
o, o), before computing its signed
A = distance, then we segment space
// Rotation in XY into infinite parallel regions of
float t = sin(time) * PI / 4; repeated distance. Space near the
matd R = mat4(s N
vecd(cos(t), sin(t), 0, O), origin ‘repeats’.
vecd (-sin(t), cos(t), 0, 0),
vecd (0, 0, 1, 0),
e v b ‘ With SDFs we get infinite repetition
I of geometry for no extra cost.
// Translate to (3, 3, 3}
mat4 T = mat4(
gzﬂé'f'“ float fScene(vec3 pt) {
\'ecd!ﬂ: o: vec3 pos;
vecd (0, 0, pos = vec3 (mod(pt.x + 2, 4) - 2, pt.y, mod(pt.z + 2, 4) - 2);
Pt - (veci(pt, 1] *inverse(s * R * T)).xy=; e geldies (peg, weed(l))s
}
return sdSphere(pt, 1);
! J J
159 160
a N\
ﬂ:tujﬁhizz;‘t’:f;tﬁ’ti floar radius) | The previous example modified ‘all
) of space” with the same transform,
so its distance functions retain
° Sdfpzfif;j;*ji 1 their local linearity.
= ~4.5 We can also apply non-uniform
o sdsphere | spatial distortion, such as by
((4 +2) % 4) -2, 4) choosing how much we’ll modify
= V(0*0+4%4) - 1 space as a function of where in
-3 space we are.
e sdSphere (
o _ float fScene(vec3 pt) {
((4 +2) % 4) -2, e
((4 +2) % 4) - 2) float t = (pt.y + 2.5) * sin(time);
= N (0*0+0%0) - 1 return sdCube (vec3(
= -1 // Inside surface g§§ ; z?s(t) = Bl5oB & S
pt.x * sin(t) + pt.z * cos(t)), vec3(1));
J) J
J
161 162

Recommended reading

Seminal papers:
e John C. Hart et al., “Ray Tracing Deterministic 3-D Fractals™,
http://graphics.cs.illinois.edu/sites/default/files/rtqjs.pdf
e John C. Hart, “Sphere Tracing: A Geometric Method for the Antialiased Ray Tracing of Implicit
Surfaces™, http://graphics.cs.illinois.edu/papers/zeno

Special kudos to Inigo Quilez and his amazing blog:

e hitp://iquilezles.org/www/articles/smin/smin.htm
e hitp://iquilezles.org/www/articles/distfunctions/distfunctions.htm

Other useful sources:

e Johann Korndorfer, “How to Create Content with Signed Distance Functions™,
https://www.youtube.com/watch?v=s8nFqwOho-s

e Daniel Wright, “Dynamic Occlusion with Signed Distance Fields™,
http://advances.realtimerendering.com/s2015/DynamicOcclusionWithSignedDistanceFields. pdf

e 9bit Science. “Raymarching Distance Fields”,
http://9bitscience.blogspot.co.uk/2013/07/raymarching-distance-fields_14.html

wr '

L‘_‘A.'
Al —

Subdivision
Surfaces

J
163 164 Alex Benton, University of Cambridge — A.Benton@damtp.cam.ac.uk
Supported in part by Google UK, Ltd
3 3
CAD, CAM, and a new motivation:
shiny things History
The term spline comes from L A
Expensive products are sleek and smooth. the shipbui[fding industry: long, M
— Expensive products are C2 continuous. thin strips of wood or metal
- would be bent and held in ’ ’
place by heavy “ducks’, lead
weights which acted as control
points of the curve.
Wooden splines can be
described by C -continuous
Hermite polynomials which
interpolate n+1 control points.
Shiny ’ but reﬂ ections are warp: ed S} hiny ’ and reﬂ ections are p e’fec‘[Top: Fig 3, P.7, Bray and Spectre, Planking and Fastening, Wooden Boat Pub (1996)
Bottom: http://www.pranos.com/boatsofwood/lofting%20ducks/lofting_ducks.htm
J J
3 3
The drive for smooth CAD/CAM Beziers—a quick review
e Continuity (smooth curves) can e A Bezier cubic is a function P(t) defined
be essential to the perception of by four control points:
quality. e P, and P, are the endpoints of the curve
PR e P_and P, define the other two corners of the P
e The automotive industry wanted blundine pol 2 P
design cars which were ounding polveon. ?
to desig . o e The curve fits entirely within the convex
aerodynamic, but also visibly of hull of P.._P
high quality. oA P,
Begier (R 1ty and de Casteli e Beziers are a subset of a broader class of >
¢ Cez fer (enau Y gnB ¢ asteljau splines and surfaces called NURBS: Non 4
? 1:0611‘;)61(;1vegteB enérl\(/zlurves Uniform Rational B-Splines.
in the Jous. de boot (.) e For decades, NURBS patches have been
generalized them to B-splines. the bedrock of CAD/CAM
J J

Cubic: P(1) = (I-1y’P, + 3((1-1y’P, + 3°(I-0)P + PP,

Bezier (NURBS) patches aren’t the greatest

e NURBS patches are nXm,

forming a mesh of quadrilaterals.
e What if you wanted triangles or
pentagons?
o A NURBS dodecahedron?
e What if you wanted vertices of valence
four?
e NURBS expressions for triangular patches,

and more, do exist; but they’re cumbersome.

er than

Problems with NURBS patches

e Joining NURBS patches
with C, continuity
across an edge is
challenging.

e What happens to
continuity at corners
where the number of
patches meeting isn’t
exactly four?

® Animation is tricky:
bending and blending
are doable, but not easy.

Sadly, the world isn’t made up of shapes that
can always be made from one
smoothly-deformed rectangular surface.

169

170

Subdivision surfaces

e Beyond shipbuilding:
we want guaranteed
continuity, without
having to build
everything out of

rectangular patches.

e Applications include
CAD/CAM, 3D
printing, museums and
scanning, medicine,
movies...

o The solution:

subdivision surfaces.
; 0 L Ny

Subdivision surfaces

« Instead of ticking a parameter ¢ along
a parametric curve (or the parameters
u,v over a parametric grid),
subdivision surfaces repeatedly refine
from a coarse set of control points.

o Each step of refinement adds new
faces and vertices.

o The process converges to a smooth
limit surface.

171

(Catmull-Clark in action) 5,

Subdivision surfaces — History

e de Rahm described a 2D (curve) subdivision
scheme in 1947; rediscovered in 1974 by Chaikin

e Concept extended to 3D (surface) schemes by two
separate groups during 1978:

e Doo and Sabin found a biquadratic surface
e Catmull and Clark found a bicubic surface

e Subsequent work in the 1980s (Loop, 1987; Dyn
[Butterfly subdivision], 1990) led to tools suitable
for CAD/CAM and animation

Subdivision surfaces and the movies

e Pixar first demonstrated subdivision

surfaces in 1997 with Geri’s Game.

e Up until then they’d done everything in
NURBS (Toy Story, A Bug’s Life.)

e From 1999 onwards everything they did was
with subdivision surfaces (Toy Story 2,
Monsters Inc, Finding Nemo...)

o Two decades on, it’s all heavily customized.

e It’s not clear what Dreamworks uses,
but they have recent patents on

subdivision techniques.

173

Useful terms

e A scheme which describes a 1D curve (even if that curve is
travelling in 3D space, or higher) is called univariate, referring
to the fact that the limit curve can be approximated by a
polynomial in one variable (¢).

o A scheme which describes a 2D surface is called bivariate, the
limit surface can be approximated by a u,v parameterization.

e A scheme which retains and passes through its original control
points is called an interpolating scheme.

e A scheme which moves away from its
original control points, converging to a
limit curve or surface nearby, is called an
approximating scheme.

How it works

e Example: Chaikin curve subdivision (2D)
e On each edge, insert new control points at ¥4 and
% between old vertices; delete the old points

e The limit curve is C1 everywhere (despite the poor
figure.)

J
Control surface for Geri’s heazil75

176

Notation

Chaikin can be written programmatically as:

Notation

Chaikin can be written in vector notation as:

Pk Pk+1 — (3 Pk + 1 Pk (_Even : ‘] i : T : 1
’k 1 2i (A) i (A) i+1 3101010 P,
Pt K+l _ k k = ;
xw P =P+ ()P, <0dd Off T}| 3][01]]0 |0 (PL]
here kis th . X - (B _1| [ojof3jit]jojo| (A
...where £ is the ‘generation’; each generation wi = . r
o have twice as many control points as before. Pﬁkﬁ 4 Ol OF 1|13 110110
P Notice the different treatment of generating odd and L 0 0 0}j31]0
even control points. LoJLoJLoJiJ3J10)
B. Borders (terminal points) are a special case. L] L : i
J J
177 178
N\ N\
Notation Reading the kernel

e The standard notation compresses the scheme to a kernel:
o n=(1/4)...0,013B])o.0...]

e The kernel interlaces the odd and even rules.

e [t also makes matrix analysis possible: eigenanalysis of
the matrix form can be used to prove the continuity of the

subdivision limit surface.
e The details of analysis are fascinating, lengthy, and sadly
beyond the scope of this course
e The limit curve of Chaikin is a quadratic B-spline!

Consider the kernel

h=(1/8)[...,0,0,1,4,6,4,1,0,0,...]
You would read this as

Py = (KB + 6P + PL)
Py = (R)AR" +4P)

The limit curve is provably C2-continuous.

179

180

Making the jump to 3D: Doo-Sabin Doo-Sabin in action

Doo-Sabin takes Chaikin to 3D:
P=(9/16) 4 +
(3/16) B+
(3/16) C +
(1/16) D
This replaces every old vertex
with four new vertices.

The limit surface is biquadratic,
C1 continuous everywhere.

(2) 190 faces (3) 702 faces

181 182

Catmull-Clark Catmull-Clark
e Catmull-Clark is a bivariate approximating Getting tensor again:
scheme with kernel #=(1/8)[1,4,6,4,1]. 1 1 1 4 4 1
e Limit surface is bicubic, C2-continuous. . @
4 AP AT
16 16 Vertex g 6 ®§ 6 :a@ 24 24 @
Face 2Uh g 42 6 = 6 4 4
N 4 >{>
16 16)
‘ 4 Edge 4 6 1 ’ Vertex rule Face rule Edge rule
164)l U)
Catmull-Clark in action Catmull-Clark vs Doo-Sabin
Doo-Sabin
Catmull-Clark

185 186

Creases

Extensions exist for most schemes to support
creases, vertices and edges flagged for partial or
hybrid subdivision.

N\ N\
Extraordinary vertices Extraordinary vertices: Catmull-Clark

e Catmull-Clark and Doo-Sabin both Catmull-Clark vertex i

operate on quadrilateral meshes. .
. Al{ faces ha\lfle fm;r bounde[airy edges rules generallzed for ;fz— : ‘
e All vertices have four incident edges : : . S \

e What happens when the mesh contains extragrfimary vertices:] 20 :
extraordinary vertices or faces? e Original vertex: ‘ s

e For many schemes, adaptive weights exist (4n-7)/ 4n | fi
which can continue to guarantee at least i . . 3 ‘
some (non-zero) degree of continuity, but — | e Immediate neighbors in 22 N
not always the best possible. the one-ring: : " /

e CC replaces extraordinary faces with 322 o
extraordinary vertices; DS replaces n) o 27
extraordinary vertices with extraordinary e Interleaved neighbors in 5,2+ 420
faces. the one-ring: 3 .

1/4n? ‘ S/
Detail of Doo-Sabin at cube
corner))
187 Image source: “Next-Generation Rendering of Subdivision 188
Surfaces”, Ignacio Castafio, SIGGRAPH 2008
N\ N\
Schemes for simplicial (triangular) meshes Loop subdivision
e [oop scheme: ® Butterfly scheme:
Vertex ‘ Vertex
1
0 Split each triangle
into four parts
Edge | Edge
0) Loop subdivision in action. The asymmetry is due to the choice of face diagonals.)
Image by Matt Fisher, http://www.its.caltech.edu/~matthewt/Chatter/Subdivision. html
189 190
N\ N\

Continuous level of detail

Still from “Volume
Enclosed by
Subdivision Surfaces
with Sharp Creases™
by Jan Hakenberg.
Ulrich Reif. Scott
Schaefer, Joe Warren
http://vixra.org/pdf/1
406.0060v1.pdf

For live applications (e.g. games) can compute
continuous level of detail, e.g. as a function of
distance:

191

Level 5 Level 5.2 Level 5.8 192

Direct evaluation of the limit surface

e In the 1999 paper Exact Evaluation Of
Catmull-Clark Subdivision Surfaces at Arbitrary
Parameter Values, Jos Stam (now at
Alias|Wavefront) describes a method for finding
the exact final positions of the CC limit surface.

e His method is based on calculating the tangent and normal
vectors to the limit surface and then shifting the control
points out to their final positions.

e What’s particularly clever is that he gives exact evaluation
at the extraordinary vertices. (Non-trivial.)

Bounding boxes and convex hulls for
subdivision surfaces

193

e The limit surface is (the weighted average of (the weighted
averages of (the weighted averages of (repeat for eternity...))))
the original control points.

e This implies that for any scheme where all weights are positive
and sum to one, the limit surface lies entirely within the
convex hull of the original control points.

e For schemes with negative weights:

e Let L=max I |N (1) be the greatest sum throughout parameter
space of the absolute values of the weights.

e For a scheme with negative weights, L will exceed 1.

e Then the limit surface must lie within the convex hull of the
original control points, expanded unilaterally by a ratio of (Z-1).

194

Splitting a subdivision surface

Many algorithms rely on subdividing a surface and
examining the bounding boxes of smaller facets.
e Rendering, ray/surface intersections...

It’s not enough just to delete half your control points: the
limit surface will change (see right)
e Need to include all control points from the previous
generation, which influence the limit surface in this
smaller part.

Ray/surface intersection

(Top) 5x Catmull-Clark subdivision of a cube

(Bottom) 5x Catmull-Clark subdivision of two halves of a cube;
the limit surfaces are clearly different. 195

e To intersect a ray with a subdivision surface,
we recursively split and split again,
discarding all portions of the surface whose
bounding boxes / convex hulls do not lie on
the line of the ray.

e Any subsection of the surface which is ‘close
enough’ to flat is treated as planar and the
ray/plane intersection test is used.

e This is essentially a binary tree search for the
nearest point of intersection.

e You can optimize by sorting your list of
subsurfaces in increasing order of distance
from the origin of the ray.

196

Rendering subdivision surfaces

e The algorithm to render any subdivision surface is exactly the
same as for Bezier curves:
“If the surface is simple enough, render it directly;
otherwise split it and recurse.”
e One fast test for “simple enough” is,
“Is the convex hull of the limit surface
sufficiently close to flat?”
e (Caveat: splitting a surface and
subdividing one half but not the

other can lead to tears where
the different resolutions meet. —

Rendering subdivision surfaces on the GPU

e Subdivision algorithms have been ported to the
GPU using geometry (tesselation) shaders.
e This subdivision can be done completely independently of
geometry, imposing no demands on the CPU.
e Uses a complex blend

of precalculated weights >
and shader logic g%
e Impressive effects XX

in use at id, Valve,
etal

Figure from Generic Mesh Renement on GPU,
Tamy Boubekeur & Christophe Schlick (2005)
LaBRI INRIA CNRS University of Bordeaus, France

198

N N
Subdivision Schemes—A partial list References
e Appr xim ing e Interp 1 ing Catmull, E., and J. Clark. “Recursively Generated B-Spline Surfaces on Arbitrary
O ~at Lerpo at- Topological Meshes.” Computer Aided Design, 1978.
e Quadrilateral o Quadrilateral e .
o (12)[12.1] o Kobbelt Dyn, N., J. A. Gregory, and D. A. Levin. B’ytterﬂy Subd1v1s_10n Scheme for
US133.1 . Surface Interpolation with Tension Control.” ACM Transactions on
d <D)[§ o’ ! e Triangle Graphics. Vol. 9, No. 2 (April 1990): pp. 160-169.
(Doo-Sabin) ® ?uttfrﬂy L Halstead, M., M. Kass, and T. DeRose. “Efficient, Fair Interpolation Using
e (1/3)[1.4.64.1] o 3" Subdivision Catmull-Clark Surfaces.” Siggraph ‘93. p. 35.
(C_atmull-Clark) Zorin, D. “Stationary Subdivision and Multiresolution Surface Representations.”
® Mid-Ldge . Ph.D. diss., California Institute of Technology, 1997
o Triangles Many more exist, some much Ignacio Castano, “Next-Generation Rendering of Subdivision Surfaces.” Siggraph
e Loop more c()mp]ex ’08, http://developer.nvidia.com/object/siggraph-2008-Subdiv.html
P . . Dennis Zorin’s SIGGRAPH course, “Subdivision for Modeling and Animation”,
This }S a major topic of http://www.mrl.nyu.edu/publications/subdiv-course2000/
ongoing research
J J
199 200
N
Terminology
Advanced e
Grap h ic S o We’ll be focusil?g on discrete (as _
opposed to continuous) representation Edge: Non-manifold vs manifold
of geometry; i.e., polygon meshes
o Many rendering systems limit themselves
to triangle meshes
® Many require that the mesh be manifold
o In a closed manifold polygon mesh:
e Exactly two triangles meet at each edge
S u}’f‘aces - Methods and ® The faces meeting at each vertex belong to
. a single, connected loop of faces Non-manifold vertex
Mathematics e In a manifold with boundary:
o At most two triangles meet at each edge
e The faces meeting at each vertex belong to
a single, connected strip of faces
Vertex: Good boundary vs bad
J

201 Alex Benton, University of Cambridge — A. Benton@damtp.cam ac.uk
Supported in part by Google UK. Ltd

This slide draws much inspiration from Shirley and Marschner's ~ 2()2
Fundamentals of Computer Graphics, pp. 262-263

N\ N\
Terminology Normal at a vertex
e We say that a surface is oriented if: Expressed as a limit
a. the vertices of every face are stored in a fixed ?
order The normal of surface S at point P is the limit of the
b. if vertices i, j appear in both faces /I and /2, then .
the vertices appear in order i, / in one and /, in cross-product between two (non-collinear) vectors
the other f H H H
) . rom P to the set of points in S at a distance » from P
o We say that a surface is embedded if, o S s p . . .
. . cube wif anti-clocl Ise
informally, “nothing pokes through”: A cube it @ as r goes to zero. [Excluding orientation.]
a. No vertex, edge or face shares any point in space Klein bottle:
with any other vertex, edge or face except where notan
dictated by the data structure of the polygon mesh emr?edded
e A closed, embedded surface must separate suriace.
3-space into two parts: a bounded interior Also, terrile
]
and an unbounded exterior. drinks.
J J
This slide draws much inspiration from Hughes and Van Dam's ~ 2()3 204

Computer Graphics: Principles and Practice, pp. 637-642

Normal at a vertex

Using the limit definition, is the ‘normal’ to a
discrete surface necessarily a vector?

e The normal to the surface at any point on a face is a
constant vector.

e The ‘normal’ to the surface at any edge is an arc swept
out on a unit sphere between the two normals of the
two faces.

o The ‘normal’ to the surface at a vertex is a space swept
out on the unit sphere between the normals of all of the
adjacent faces.

Finding the normal at a vertex

Take the weighted average Face angle: the angle o

of the normals of formed at the vertex v by the
surrounding polygons, vectors to the next and
weighted by each polygon’s previous vertices in the face F'
face angle at the vertex

Vit1— Vi Vi1 —;
Fw,)=cos-1
a(,vl) cos (|’Uz'+1—71i| |Uz'—1—’0z'|)

YA Fu)N,
Np)=="-"
)= Fa)

Note: In this equation, arccos
implies a convex polygon. Why?

205

206

Gaussian curvature on smooth surfaces

Informally speaking, the
curvature of a surface
expresses “how flat the
surface isn’t”.
e One can measure the ofprincipal
directions in which the
surface is curving most; these
are the directions of principal
curvature, k1 and k..
e The product of &, and , is the
scalar Gaussian curvature.

_&

planes —normal

vector

tangent
plane

Image by Eric Gaba, from Wikipedia

Gaussian curvature on smooth surfaces

Formally, the Gaussian
curvature of a region on a
surface is the ratio between
the area of the surface of the
unit sphere swept out by the
normals of that region and Area of the projections
the area of the region itself. o e ol on the
The Gaussian curvature of a
point is the limit of this ratio
as the region tends to zero
area.

a

s 2 on a sphere of radius r
4, (please pretend that this is a sphere)

207

Gaussian curvature on discrete surfaces

On a discrete surface, normals do not vary smoothly: the
normal to a face is constant on the face, and at edges and
vertices the normal is—strictly speaking—undefined.

e Normals change instantaneously (as one's point of view travels across an
edge from one face to another) or not at all (as one's point of view travels
within a face.)

The Gaussian curvature of the surface of any polyhedral
mesh is zero everywhere except at the vertices, where it is
infinite.

Angle deficit — a better solution for
measuring discrete curvature

The angle deficit AD(v) of a vertex v is defined to be two n
minus the sum of the face angles of the adjacent faces.

AD(v)=2m— ZFa(F,v)

90° | AD(M) - 360°—270° - 90°
-

1 —
oo 1

90°

209

210

Angle deficit

Negative angle deficit

High angle deficit Low an}f?deficit

Angle deficit

211

212

Genus, Poincaré and the Euler Characteristic

e Formally, the genus g of a closed

surface is

...“a topologically invariant property of a
surface defined as the largest number
of nonintersecting simple closed
curves that can be drawn on the
surface without separating it.”

--mathworld.com

e Informally, it’s the number of
coffee cup handles in the surface.

Genus, Poincaré and the Euler Characteristic

Given a polyhedral surface S without border
where:

o |/ =the number of vertices of S,

e [= the number of edges between those vertices,
e ['=the number of faces between those edges,

o yis the Fuler Characteristic of the surface,

the Poincaré Formula states that:

V-E+F=2-2g=x

214

Genus, Poincaré and the Euler Characteristic

g=0 g=0 g=1

E=12 E=15 L=24

F=6 F=7 F=12

V=8 V=10 r=12

V-l F=2-2g=2 V-l F=2-2g =2 FEF=220-0

The Euler Characteristic and angle deficit

Descartes’ Theorem of Total Angle Deficit states that
on a surface S with Euler characteristic y, the sum of
the angle deficits of the vertices is 2my:

> ¢AD(v)=2mx

Cube: Tetrahedron:
. x=22g=2 . x=22g=2
o AD(V) =7n/2 e AD(v) =7

o 8(m/2) =4m =2my o 4(m)=4m=2my

215

216

Implicit surfaces

Implicit surface modeling is a
way to produce very ‘organic’ or
‘bulbous’ surfaces very quickly
without subdivision or NURBS.

Uses of implicit surface
modelling:
e Organic forms and nonlinear
shapes
e Scientific modeling (electron
orbitals, gravity shells in space,
some medical imaging)
o Muscles and joints with skin
Rapid prototyping
e CAD/CAM solid geometry

_‘

]

How it works

The user controls a set of control points, like
NURBS; each point in space generates a field of
force, which drops off as a function of distance
from the point (like gravity weakening with
distance.)

This 3D fi ces defines an implicit surface: the
set-of all the points in.space where some

athematical function (in this case, the value of the

Force = 2

0.5

M AKA g7 ", “force
Sfunctions™, “blobby modeling™...

217

0.25..

218

Force functions

A few popular force field functions:

o “Blobby Molecules” — Jim Blinn
F(r)=ae®™?

e “Metaballs” — Jim Blinn

a(l-3r/b%) 0 <r<P,
F(r) =1 3a2)(1-r/b)* */ <r<b
0 b <r

o “Soft Objects” — Wyvill & Wyvill
F(r) = a(l - 4r%9b° + 17r*/9b* - 2217 / 9b?)

Comparison of force functions

|

[— *:
a5 1ir*r

——— Blobby Molecules a=2,0=1

——— Meta Balls o=l b3

Soft Object a=1,b=3

054

219

Discovering the surface

An octree is a recursive subdivision of
space which “homes in” on the surface,
from larger to finer detail.

e An octree encloses a cubical volume in space.
You evaluate the force function F(v) at each
vertex v of the cube.

e As the octree subdivides and splits into smaller
octrees, only the octrees which contain some of
the surface are processed; empty octrees are
discarded.

Polygonizing the surface

To display a set of octrees, convert the octrees into polygons.

e Ifsome corners are “hot” (above the force limit) and others are
“cold” (below the force limit) then the implicit surface crosses the
cube edges in between.

e The set of midpoints of adjacent crossed edges forms one or more
rings, which can be triangulated. The normal is known from the
hot/cold direction on the edges.

To refine the polygonization, subdivide recursively; discard any
child whose vertices are all hot or all cold.

221

222

Polygonizing the surface

Recursive subdivision (on a quadtree):

Polygonizing the surface

There are fifteen possible
configurations (up to symmetry) of

O 0 O hot/cold vertices in the cube. —
e With rotations, that’s 256 cases.
Sy Beware: there are ambiguous cases in
the polygonization which must be
addressed separately. |
O—X O
Break contour Join contour Images courtesy of Diane Lingrand
O O O))
223 224
1\ 1\
Smoothing the surface Implicit surfaces -- demo
Improved edge vertices
e The naive implementation builds polygons whose
vertices are the midpoints of the edges which lie
between hot and cold vertices.
e The vertices of the implicit surface can be more
closely approximated by points linearly interpolated
along the edges of the cube by the weights of the
relative values of the force function.
e t=(0.5-F(P1))/(F(P2)-F(Pl))
e P=Pl+t(P2-Pl)
J J
225 226
1\ 1\
Voronoi dlagrams Voronoi dlagrams
P 2) Given a set S={p .p oD s the formal
The I{oronoz cﬁqgram Of.a set of definition of a Véroznoi cell C(S,p) is
points P, divides space into C(Sp)=ip e k| [p-p|<lpp). i
‘cells’, where each cell C, The p, are called the generating points
contains the points in space of the diagram.
closer to P, than any other P.
P y o Where three or more boundary edges
The Delaunay triangulation is the meet is a Voronoi point. Each Voronoi
dual of the Voronoi diagram: a point is at the center of a circle (or
graph in which an edge sphere, or hypersphere...) which passes
connects every P, which share a through thq associated generating points
L . and which is guaranteed to be empty of
common edge in the Voronoi all other generating points.
diagram.
o - - — A Voronoi diagram (dotted lines) and its
d AKA, Yon_)nm tesselation’ N D m(_:helet .. dual Delaunay triangulation (solid).
S pagicseneo e pyicichedal J [Delaunay tr applet by Paul Chew ©1997—2007

“fundamental areas™, “domain of action™. ..

227

http://www.cs.cornell.edu/home/chew/Delaunay html

228

1\ 1\
Delaunay triangulations and equi-angularity Delaunay triangulations and empty circles
The equiangularity of any Voronoi triangulations have
triangulation of a set of points the empty circle property: in
S is a sorted list of the angles any Voronoi triangulation of S,
g y g
(... o) of the triangles. (no point of S will lie inside the
e A triangulation is said to be circle circumscribing any three
equiangular if it possesses points sharing a triangle in the
lexicographically largest Voronoi diagram.
equiangularity amongst all
possible triangulations of S.
e The Delaunay triangulation
is equiangular.
Image from Handbook of Computational Geometry Image from Handbook of Computational Geometry
(2000) Jorg-Rudiger Sack and Jorge Urrutia, p. 227 (2000) Jorg-Rudiger Sack and Jorge Urrutia, p. 227
J J
229 230
1\ 1\
Delaunay triangulations and convex hulls Voronoi diagrams and the medial axis
The border of the Delaunay The medial axis of a surface is the set of all points
triangulation of a set of points is within the surface equidistant to the two or more 1
always convex nearest points on the surface. %
o This s true 'in 2D, 3D. 4D e This can be used to extract a skeleton of the / A
T surface, for (for example) path-planning “ /
.) solutions, surface deformation, and animation. 1
The Delaunay trlanglﬂatlon Of a Approximating the Medial Axis from the Voronoi
set pf pboints in R" is the plapar Dlagiam with Converc ‘
projection of a convex hull in
RVH],
e Ex: from 2D (P ={x}), loft }(\ H//Q/
the points upwards, onto a g »
parabola in 3D : : =/ 4 A
(P ,l:{x’y’xz+y2}l)‘ The . hape using a Skeleton fo Drive Simple)
resulting polyhedral mesh will IEE Do . Vol 14, No. 3, May e
still be convex in 3D.) e et {or fig Bodes i i Yo Shin Ho, Rlgh R M, nd Yong-Linng Yo)
231 232
1\ 1\
. . . .
Fortune’s algorithm GPU-accelerated Voronoi Diagrams
1. The algorithm maintains a sweep line and a . .
“beach line”, a set of parabolas advancing Brute force: Elegant (and 2D OHIY)'
1ef:}-lto-right fr:g: each pobin;. The beach line e For each pixel to be e Render each point as a
T e o e:;s‘pair of rendered on the GPU, discrete 3D cone in
parabolas is an edge of the voronoi search all points for the isometric projection, let
diagram nearest point z-buffering sort it out
b. All data to the left of the beach line is p g
“known”; nothing to the right can
change it
c. The beach line is stored in a binary tree
2. Maintain a queue of two classes of event: the
addition of, or removal of, a parabola
3. There are O(n) such events, so Fortune’s
algorithm is O(n log n)
J J

233

234

Voronoi cells in 3D

Silvan Oesterle, Michael Knauss

References

Implicit modelling:

D. Ricei, A Constructive Geomeiry for Computer Graphics, Computer Journal, May 1973

T Bloomenthal, Polvgonization of Implicit Surfaces, Computer Aided Geometric Design, Issue 3, 1988

B Wyvill, C McPheeters. G Wyvill. Soft Objects. Advanced Computer Graphics (Proc. CG Tokyo 1986)

B Wyvill, C McPheeters, G Wyvill, Animating Soft Ob]ecls The Visual Computer, Issuc 4 1986

http: //astronomy.swin.edu.au/~pbourke/modelling

http:/www.cs.berkeley edu/—job/Papers/turk-2002-MIS.pdf

hitp//www com/jbloom/papers/interactive pdf

hitp:/www-courses cs uiuc edu-cs319/polvgonization pdf

Voxels:

7. Wilhelms and A. Van Gelder, 4 Coherent Projection Approach for Direct Volume Rendering, Computer Graphics,
35(4):275-284 July 1991,

Voronoi diagrams

M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, “Computational Geometry: Algorithms and Applications”,
http://www.cs uu.nl/geobook

http://www.ics uci.edu/~eppstein/junkyard/nn html

http://www.iquilezles.org/ wwwi/articles

Gaussian Curvature

hittp://en. wikipedia.org/wiki/Gau

http://mathworld .wolfram com/GaussianCurvature html

The Poincaré Formula

hitp: /mathworld wolfram com/PoincareFormula html

voronoilines htm // Voronois on GPU

an_curvature

Springer-Verlag,

236

What’s wrong with raytracing?

e Soft shadows are expensive

e Shadows of transparent objects require
further coding or hacks

e Lighting off reflective objects follows
different shadow rules from normal lighting

e Hard to implement diffuse reflection (color
bleeding, such as in the Cornell
Box—notice how the sides of the inner
cubes are shaded red and green.)

e TFundamentally, the ambient term is a hack
and the diffuse term is only one step in
what should be a recursive, self-reinforcing
series.

\ two images are compared.

The Cornell Box is a test for rendering
Software, developed at Comell University
in 1984 by Don Greenberg. An actual box
is built and photographed; an identical
scene is then rendered in software and the

Ambient occlusion

o Ambient illumination is a blanket constant that we often add to every
illuminated element in a scene, to (inaccurately) model the way that
light scatters off all surfaces, illuminating areas not in direct lighting.

o Ambient occlusion is the technique of
adding/removing ambient light when
other objects are nearby and scattered
light wouldn’t reach the surface.

e Computing ambient occlusion is a
form of global illumination, in which
we compute the lighting of scene
elements in the context of the scene
as a whole.

With ambient occlusion

Original model

Ambient occlusion in action

Image from “ZBrush® Character Creation: Advanced 3
Digtal Sculpting, Second Edition”. by Scoft Spencer, 2071

Car photos from John Hable’s presentation at GDC 2010, .

“Uncharted 2: HDR Lighting”

com/archivedH0

N N
Ambient occlusion in action
y, y,
CG; Z::,‘stf;:v: DY;hLI;;:J‘:?; presentation at GDC 2010<2 41 Cl-';; Z::,‘stf;:v: DY;hLI;;:J‘:?; presentation at GDC 2010<2 42
N N
Ambient occlusion in action Ambient occlusion - Theory
We can treat the background (the sky)
as a vast ambient illumination source.
e For each vertex of a surface, compute
how much background illumination
reaches the vertex by computing how
much sky it can ‘see’
e Integrate occlusion AP over the
hemisphere around the normal at the
vertex:
2 1 A
p=— Voo(h - w)dw
Q
. AP occlusion at point p
e u' normalat point p
. l;w visibility from p in direction @
e O integrate over area (hemi
) J
CG:: Z::xﬂf;: i;lh'igﬂ:’.:f; presentation at GDC 2010‘2 13 Sf_tmm image cdr;::ki:f':l’U Gems 2", nVidia, 200; a:;:lgfes malppﬂ4
N N
Screen Space Ambient Occlusion
. : 13 9
Ambient occlusion - Theory (“SSAQO”)
® This approach is very flexible “True ambient occlusion is hard, 2
e Also very expensive! let’s go hacking.” £
e To speed up computation, randomly g
sample rays cast out from each E
polygon or vertex (this is a e Approximate ambient occlusion]
Monte-Carlo method) by comparing z-buffer values in N
e Alternatively, render the scene from screen space!
the point of view of each vertex and ¢ Open plane = unoccluded
count the background pixels in the ® Closed “valley’ in depth buffer =
render shadowed by nearby geometry
e Best used to pre-compute per-object . Multi-pa;s algorithm
“occlusion maps”, texture maps of ® Runs entirely on the GPU
shadow to overlay onto each object
e But pre-computed maps fare poorly
on animated models...
y, J

Timage crdit “GPU Gems 1°. nVidia, 2004
Top: without AO. Bottom: with A0, 245

Image: CryEngine 2. M. Mittring, “Finding Next Gen —
CryEngine 2.0, Chapter 8", SIGGRAPH 2007 Course 28

Screen Space Ambient Occlusion

1. For each visible point on a surface in the scene

(ie., each pixel), take multiple samples (typically

between 8 and 32) from nearby and map these

samples back to screen space

Check if the depth sampled at each neighbor is

nearer to, or further from, the scene sample point

If the neighbor is nearer than the scene sample

point then there is some degree of occlusion

a. Care must be taken not to occlude if the nearer

neighbor is too much nearer than the scene
sample point: this implies a separate object, much
closer to the camera

Sum retained occlusions, weighting with an

occlusion function—)

Image: StarCraft Il. Advances in Real-Time Rendering mi%
Graphics and Games - Course notes, SIGGRAPH 2008

SSAO example- Uncharted 2

4) Low Pass Filter (significant blurring)

(filmicgames.com/archives/6)

DC 2010, “Uncharted 2: HDR Lighting™ 248

1\ 1\
Ambient occlusion and Signed Distance
Fields Radiosity
)) ® Radiosity is an illumination method which
In a nutshell, SSAO tries to estimate simulates the global dispersion and
occlusion by asking, “how far is it to reflection of diffuse light.
the nearest neighboring geometry?” e First developed for describing spectral
With signed distance fields, this question heat transfer (1950s)
is almost trivial to answer. e Adapted to graphics in the 1980s at
float ambient(vec3 pt, vec3 normal) { COrnCll UﬂiVCrSity
return aba(getSHE(ot + 0.1 * mormall) / 0-1; e Radiosity is a finite-element approach to
! global illumination: it breaks the scene into
_ many small elements (‘patches’) and
I RGeS by wosd el calculates the energy transfer between
int step = 0; them.
for (float t = 0.01; t <= 0.1;) {
float d = abs(getSdf(pt + t * normal));
a =min(a, d / t);
t += max(d, 0.01);
return a7)
: 249 i e, 20
1\ 1\
Radiosity—algorithm Radiosity—mathematical support
e Surfaces in the scene are divided into patches, small subsections of The ‘radiosity’ of a single patch is the amount of energy leaving
;aCh polygon OrfObecﬁ- AB te 8 view factor (also called the patch per discrete time interval.
¢ Forevery pair of patches A, B, compute a yiew factor (also called a This energy is the total light being emitted directly from the patch
I Ortmhf chror) describing how much energy from patch A reaches combinedg\};vith the total l%rght beifg reflected by tﬁ:e patch: P
patc :
e The further apart two patches are in space or orientation, the less light
they shed on each other, giving lower view factors.
e Calculate the lighting of all directly-lit patches. B. = Z‘ {7
e Bounce the light from all lit patches to all those they light, carrying This formq a q}’Sxt of lificar equations, where..
more light to patches with higher relative view factors. Repeating B, is the radloslty of patch i;
this step will distribute the total B' is the radiosity of each of the other patches (j#i)
light across the scene, producing ; is the emitted energy of the patch
a global diffuse illumination model. — R is the reflectivity of the patch
= 1
+ F, ’ is the view factor of energy from patch i to patch ;.
N
\ I\ / i / L/ J
A—F- t } X /
A AN 51 252

1\ 1\
Radiosity—form factors Radiosity—implementation
e Finding form factors can be done (A) Simple patch triangulation
procedurally or dynamically (B) Adaptive patch generation: the floor
e Can subdivide every surface into small d .
patches of similar size and walls of the room are dynamically
e Can dynamically subdivide wherever the 1% subdivided to produce more patches
derivative of calculated intensity rises above where shadow detail is higher.
some threshold.
e Computing cost for a general radiosity
solution goes up as the square of the number 3
of patches, so try to keep patches down. Images from “Automatic I (A) o (B)
e Subdividing a large flat white wall could be generation of node spacing aaﬁ "‘!}’a'l
a waste. function”, IBM (1998) N itk -
e Patches should ideally closely align with http:/www.trl.ibm.com/ R ;555:4
lines of shadow. projects/meshing/nsp/ ;Qg rjﬁi‘
nspE.htm Kl Pk
A o
o i
A RN
) L K nﬁsg
253 254
1\ 'd 1\
Radiosity—view factors Radiosity—calculating visibility
One equation for the view factor between e Calculating V(i,j) can be slow.
patches 7, j is: 4 I e One method is the hemicube, in which each form factor is encased in a
.. cosfcosb, . half-cube. The scene is then ‘rendered’ from the point of view of the
Fio j=—-5—V(@)) —_— patch, through the walls of the hemicube; V(i j) is computed for each
...where @ is the angle between the normal of patch based on which patches it can see (and at what percentage) in its
patch 7 and the line to patch /, r is the distance hemicube.
and V(i) is the visibility from i to j (0 for e A purer method, but more computationally expensive, uses
occluded, 1 for clear line of sight.) _ High view factor J heglispheres. ? P Y exp >
Note: This method can be accelerated
—_ using modern graphics hardware to
\ render the scene. The scene is
D ‘rendered’ with flat lighting, setting the
“color’ of each object to be a pointer to
the object in memory.
L iew fact
k ow view factor j) J
255 Hemicube Projection Hemispherical Projection 256
1\ 'd 1\
Radiosity gallery Shadows, refraction and caustics
e Problem: shadow ray strikes
transparent, refractive object.
) e Refracted shadow ray will
Gt Goms mmvidia now miss the light.
e This destroys the validity of
the boolean shadow test.
e Problem: light passing through
a refractive object will
sometimes form caustics (right),
artifacts where the envelope of
a collection of rays falling on 4
Teapot (wikipedia) the Surface 18 brlght CnOUgh to This is a photo of a real pepper-shaker.
be ViSibleA Note the caustics to the left of the shaker, in and
outside of its shadow.
Image from A Two Pass Solution to the Rendering Equation: Photo credit: Jan Zankowski
a Synthesis of Ray Tracing and Radiosity Methods.
John R. Wallace, Michael F. Cohen and Donald P. Greenberg.
(Cornell University, 1987)) L)
257 258

Shadows, refraction and caustics

e Solutions for shadows of transparent objects:
e Backwards ray tracing (Arvo)
e Jery computationally heavy
e Improved by stencil mapping (Shenya et al)
o Shadow attenuation (Pierce)
o Low refraction, no caustics

e More general solution:
® Photon mapping (Jensen)—

Photon mapping

Photon mapping is the process of
emitting photons into a scene and
tracing their paths probabilistically
to build a photon map, a data
structure which describes the
illumination of the scene
independently of its geometry.

This data is then combined with
ray tracing to compute the global
illumination of the scene.

Image by Henrik Jensen (2000)

Image from http://raphics uesd.edu/~henrik

Generated with photon mapping

260

Photon mapping—algorithm (1/2)

Photon mapping is a two-pass algorithm:

1. Photon scattering

A. Photons are fired from each light source, scattered in
randomly-chosen directions. The number of photons per light is
a function of its surface area and brightness.

B. Photons fire through the scene (re-use that raytracer, folks.)
Where they strike a surface they are either absorbed, reflected or
refracted.

C. Wherever energy is absorbed, cache the location, direction and
energy of the photon in the photon map. The photon map data
structure must suPport fast insertion and fast nearest-neighbor
lookup; a kd-tree’ is often used.

Image by Zack Waters

Photon mapping—algorithm (2/2)

Photon mapping is a two-pass algorithm:

2' Rendering Image by Zack Waters

A. Ray trace the scene from the point of view of the camera.

B. For each first contact point P use the ray tracer for specular but
compute diffuse from the photon map and do away with ambient
completely.

C. Compute radiant illumination by summing the contribution
along the eye ray of all photons within a sphere of radius of P.
Caustics can be calculated directly here from the photon map.
For speed, the caustic map is usually distinct from the radiance
map.

261

262

Photon mapping is probabilistic

This method is a great example of
Monte Carlo integration, in which a
difficult integral (the lighting
equation) is simulated by randomly
sampling values from within the
integral’s domain until enough
samples average out to about the
right answer.

e This means that you’re going to be
firing millions of photons. Your
data structure is going to have to be
very space-efficient.

J

Photon mapping is probabilistic

e Initial photon direction is random. Constrained by light
shape, but random.
o What exactly happens each time a photon hits a solid also
has a random component:
e Based on the diffuse reflectance, specular reflectance and
transparency of the surface, compute probabilities p, p, and p,
where (p tp +tp)<1. This gives a probability map:

0 1 This surface would

I 1? d }? S ‘l? ‘ | have minimal

" e Choose arandomlvaluk p € [0,1]. Whert p faligdmathenight.
probability map of the surface determines whether the photon is
reflected, refracted or absorbed.

Image credit: hitp://wiww.okino.com/conv/imp_jt.htm

263

264

Photon mapping gallery

http://web.cs.wpi.edu/~emmanuel/courses/cs563/writ
e_ups/zackw/photon_mapping/PhotonMapping.html

http://www pbrt.org/gallery.php

References

Shirley and Marschner, “Fundamentals of Computer Graphics”, Chapter 24 (2009)

Ambient occlusion and SSAQ
e “GPU Gems 2". nVidia. 2005. Vertices mapped to illumination,
http:/http. developer nvidia.com/GPUGems2/gpugems2_chapter 14 html
e MITTRING, M. 2007. Finding Next Gen — CryEngine 2.0, Chapter 8, SIGGRAPH 2007 Course 28 — Advanced
Real-Time Rendering in 3D Graphics and Games, Siggraph 2007, San Diego, CA. August 2007.
http://developer.amd.com/wordpress/media/2012/10/Chapter8-Mittring-Finding NextGen_CryEngine2 pdf

e John Hable’s presentation at GDC 2010, “Uncharted 2: HDR Lighting” (filmicgames.com/archives/6)

Radiosity
e nVidia: http:/http developer.nvidia. com/GPUGems.
e Cornell: http:/Avww graphics.cornell. edu/online/r rch/
e Wallace, TR, K A Elmquist. and E. A~ Haines. 1989, A Ray Tracing Algorithm for Progressive Radiosity.”
In Computer Graphics (Proceedings of SIGGRAPH 89) 23(4), pp. 315-324
Buss. “3-D Computer Graphics: A Mathematical Introduction with OpenGL” (Chapter XI), Cambridge University
Press (2003)

2_chapter39 html

Photon mapping
e Henrik Jensen. “Global [llumination using Photon Maps™: http://graphics ucsd edu/~henrik/
e Henrik Jensen, “Realistic Image Synthesis Using Photon Mapping”™
e Zack Waters, “Photon Mapping™:
hitpJ//Aweb.cs.wpi.edu/~e el/courses/esS63/write_ups/zackw/photon_mapping/PhotonMapping html

266

